×

Boltzmann-Grad limit of a hard sphere system in a box with isotropic boundary conditions. (English) Zbl 1484.82041

Summary: In this paper we present a rigorous derivation of the Boltzmann equation in a compact domain with isotropic boundary conditions. We consider a system of \(N \) hard spheres of diameter \(\epsilon \) in a box \(\Lambda : = [0, 1]\times(\mathbb{R}/\mathbb{Z})^2 \). When a particle meets the boundary of the domain, it is instantaneously reinjected into the box with a random direction, but conserving kinetic energy. We prove that the first marginal of the process converges in the scaling \(N\epsilon^2 = 1 , \epsilon\rightarrow 0 \) to the solution of the Boltzmann equation, with the same short time restriction of Lanford’s classical theorem.

MSC:

82C40 Kinetic theory of gases in time-dependent statistical mechanics
35Q20 Boltzmann equations
82D05 Statistical mechanics of gases

References:

[1] R. K. Alexander, The Infinite Hard-Sphere System, ProQuest LLC, Ann Arbor, MI, 1975, URL http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:7615092, Thesis (Ph.D.)-University of California, Berkeley.
[2] T. Bodineau; I. Gallagher; L. Saint-Raymond, A microscopic view of the Fourier law, Comptes Rendus Physique, 20, 402-418 (2019) · doi:10.1016/j.crhy.2019.08.002
[3] L. Boltzmann, Lectures on Gas Theory, Translated by Stephen G. Brush, University of California Press, Berkeley-Los Angeles, Calif., 1964.
[4] S. Caprino; M. Pulvirenti, The Boltzmann-Grad limit for a one-dimensional Boltzmann equation in a stationary state, Commun. Math. Phys., 177, 63-81 (1996) · Zbl 0852.76080
[5] N. Catapano, Stime \(L^\infty\) Peril Flusso di Knudsen Concondizioni Diffusive al Bordo, Master’s thesis.
[6] C. Cercignani, Rarefied Gas Dynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2000, From basic concepts to actual calculations. · Zbl 0961.76002
[7] C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, vol. 106 of Applied Mathematical Sciences, Springer-Verlag, New York, 1994. · Zbl 0813.76001
[8] R. Denlinger, The propagation of chaos for a rarefied gas of hard spheres in the whole space, Arch. Ration. Mech. Anal., 229, 885-952 (2018) · Zbl 1397.35164 · doi:10.1007/s00205-018-1229-1
[9] T. Dolmaire, Etude Mathématique de la Dérivation de L’équation de Boltzmann Dans un Domaine À bord, PhD thesis, Université de Paris, 2019.
[10] T. Dolmaire, About Lanford’s theorem in the half-space with specular reflection, 2021, arXiv: 2102.05513.
[11] R. Esposito; Y. Guo; C. Kim; R. Marra, Non-isothermal boundary in the Boltzmann theory and Fourier law, Commun. Math. Phys., 323, 177-239 (2013) · Zbl 1280.82009 · doi:10.1007/s00220-013-1766-2
[12] R. Esposito, Y. Guo, C. Kim and R. Marra, Stationary solutions to the Boltzmann equation in the hydrodynamic limit, Ann. PDE, 4 (2018), Paper No. 1,119 pp. · Zbl 1403.35195
[13] R. Esposito; R. Marra, Stationary non equilibrium states in kinetic theory, J. Stat. Phys., 180, 773-809 (2020) · Zbl 1447.82026 · doi:10.1007/s10955-020-02528-w
[14] I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2013. · Zbl 1315.82001
[15] V. Gerasimenko and I. Gapyak, Low-density asymptotic behavior of observables of hard sphere fluids, Adv. Math. Phys., 2018 (2018), No 6252919, 11 pp. · Zbl 1405.82026
[16] S. Goldstein, J. L. Lebowitz and E. Presutti, Mechanical system with stochastic boundaries, Random Fields. Rigorous Results in Statistical Mechanics and Quantum Field Theory, Esztergom 1979, Colloq. Math. Soc. Janos Bolyai, 27 (1981), 403-419. · Zbl 0493.60100
[17] H. Grad, On the kinetic theory of rarefied gases, Comm. Pure Appl. Math., 2, 331-407 (1949) · Zbl 0037.13104 · doi:10.1002/cpa.3160020403
[18] J.-P. Guiraud, Problème aux limites intérieur pour l’équation de Boltzmann linéaire, J. Méc., Paris, 9, 443-490 (1970) · Zbl 0208.28101
[19] J.-P. Guiraud, Problème aux limites interieur pour l’équation de Boltzmann en regime stationnaire, faiblement non linéaire, J. Méc., Paris, 11, 183-231 (1972) · Zbl 0245.76061
[20] R. Illner and M. Pulvirenti, Global validity of the Boltzmann equation for two- and three-dimensional rare gas in vacuum. Erratum and improved result: “Global validity of the Boltzmann equation for a two-dimensional rare gas in vacuum”, [Comm. Math. Phys., 105 (1986), 189-203; MR0849204 (88d: 82061)] and “Global validity of the Boltzmann equation for a three-dimensional rare gas in vacuum” [ibid. 113 (1987), 79-85; MR0918406 (89b: 82052)] by Pulvirenti, Comm. Math. Phys., 121 (1989), 143-146, URL http://projecteuclid.org/euclid.cmp/1104178007. · Zbl 0850.76600
[21] O. E. Lanford, III Time evolution of large classical systems, in Dynamical Systems, Theory and Applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974). Lecture Notes in Phys., Vol. 38, 1975, 1-111. · Zbl 0329.70011
[22] C. Le Bihan, Convergence D’un Système de Sphères Dures Vers une Solution de L’équation de Stokes-Fourier Avec Bord, Master’s thesis, ENS de Lyon, 2019.
[23] C. D. Levermore, Mathematics of Kinetic Theory, 2012, Lecture notes, https://terpconnect.umd.edu/ lvrmr/2012-2013-F/Classes/AMSC698/NOTES/Lec06.pdf.
[24] M. Pulvirenti, C. Saffirio and S. Simonella, On the validity of the Boltzmann equation for short range potentials, Rev. Math. Phys., 26 (2014), 1450001, 64 pp. · Zbl 1296.82051
[25] M. Pulvirenti; S. Simonella, On the evolution of the empirical measure for the hard-sphere dynamics, Bull. Inst. Math. Acad. Sin. (N.S.), 10, 171-204 (2015) · Zbl 1322.82008
[26] H. Spohn, Large Scale Dynamics of Interacting Particles, Berlin: Springer-Verlag, 1991. · Zbl 0742.76002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.