×

Stationary non equilibrium states in kinetic theory. (English) Zbl 1447.82026

Summary: Stationary non equilibrium solutions to the Boltzmann equation, despite their relevance in applications, are much less studied than time dependent solutions, and no general existence theory is yet available, due to serious technical difficulties. Here we review some results on the construction of stationary non equilibrium solutions, in a general domain in contact with a slightly non-homogeneous thermal reservoir, both for finite and small Knudsen number. We will describe different approaches and different techniques developed. The main focus will be on stationary solutions close to hydrodynamics. In particular, we will give an answer to the longstanding open problem of the rigorous derivation of the steady incompressible Navier-Stokes-Fourier system from the Boltzmann theory, in the presence of a small external force and diffuse boundary condition with small boundary temperature variations.

MSC:

82C40 Kinetic theory of gases in time-dependent statistical mechanics
82B40 Kinetic theory of gases in equilibrium statistical mechanics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
76A02 Foundations of fluid mechanics
76N06 Compressible Navier-Stokes equations
35Q20 Boltzmann equations
Full Text: DOI

References:

[1] Arkeryd, L.; Esposito, R.; Marra, R.; Nouri, A., Stability of the laminar solution of the Boltzmann equation for the Benard problem, Bull. Inst. Math. Acad. Sin., 3, 51-97 (2008) · Zbl 1145.82323
[2] Arkeryd, L.; Esposito, R.; Marra, R.; Nouri, A., Stability for Rayleigh-Benard convective solutions of the Boltzmann equation, Arch. Ration. Mech. Anal., 198, 125-187 (2010) · Zbl 1333.35150
[3] Arkeryd, L.; Esposito, R.; Marra, R.; Nouri, A., Ghost effect by curvature in planar Couette flow, Kinet. Relat. Models., 4, 109-138 (2011) · Zbl 1210.82027
[4] Arkeryd, L.; Esposito, R.; Marra, R.; Nouri, A., Exponential stability of the solutions to the Boltzmann equation for the Benard problem, Kinet. Relat. Models, 5, 673-695 (2012) · Zbl 1259.82041
[5] Arkeryd, L.; Nouri, A., On a Taylor-Couette type bifurcation for the stationary nonlinear Boltzmann equation, J. Stat. Phys., 124, 401-443 (2006) · Zbl 1134.82028
[6] Arkeryd, L.; Nouri, A., \(L^1\) Solutions to the stationary Boltzmann equation in a slab, Ann. Fac. Sci. Toulouse Math., 6, 9, 375-413 (2000) · Zbl 0991.45005
[7] Arkeryd, L., Nouri, A.: Asymptotic techniques for kinetic problems of Boltzmann type. In: Proceedings of the 3rd edition of the summer school in “Methods and Models of kinetic theory”, Rivista di Matematica della Universita di Parma 7 , pp. 1-74 (2007) · Zbl 1194.76258
[8] Arkeryd, L.; Nouri, A., The stationary Boltzmann equation in \(R^n\) with given indata, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1, 5, 359-385 (2002) · Zbl 1170.76350
[9] Babenko, K.I.: On stationary solutions of the problem of flow past a body of a viscous incompressible fluid. Mat. Sb., 91(133), 3-27 (1973); English Transl.: Math. SSSR Sbornik, 20 1973, 1-25 (1973) · Zbl 0285.76009
[10] Bardos, C.; Caflisch, RE; Nicolaenko, B., The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas, Commun. Pure Appl. Math., 39, 323-352 (1986) · Zbl 0612.76088
[11] Bardos, C.; Golse, F.; Levermore, D., Fluid dynamical limits of kinetic equations I. Formal derivations, J. Stat. Phys., 63, 323-344 (1991)
[12] Bardos, C.; Golse, F.; Levermore, D., Fluid dynamical limits of kinetic equations, II : convergence proofs for the Boltzmann equation, Commun. Pure Appl. Math., 46, 667-753 (1993) · Zbl 0817.76002
[13] Bardos, C.; Ukai, S., The classical incompressible Navier-Stokes limit of the Boltzmann equation, Math. Mod. Meth. Appl. Sci., 1, 235 (1991) · Zbl 0758.35060
[14] Bensoussan, A.; Lions, J-L; Papanicolaou, GC, Boundary layers and homogenization of transport processes, Publ. Res. Inst. Math. Sci., 15, 53-157 (1979) · Zbl 0408.60100
[15] Bobylev, AV, Quasistationary hydrodynamics for the Boltzmann equation, J. Stat. Phys., 80, 1063-1083 (1995) · Zbl 1081.82612
[16] Brull, S., The stationary Boltzmann equation for a two-component gas in the slab, Math. Methods Appl. Sci., 31, 153-178 (2008) · Zbl 1139.82017
[17] Caflisch, RE, The fluid dynamical limit of the nonlinear Boltzmann equation, Commun. Pure Appl. Math., 33, 651-666 (1980) · Zbl 0424.76060
[18] Carlen, EA; Lebowitz, JL; Mouhot, C., Exponential approach to, and properties of, a non-equilibrium steady state in a dilute gas, Braz. J. Probab. Stat., 29, 572-586 (2015)
[19] Carlen, EA; Esposito, R.; Lebowitz, JL; Marra, R.; Mouhot, C., Approach to the steady state in kinetic models with thermal reservoirs at different temperatures, J. Stat. Phys., 172, 522-543 (2018) · Zbl 1397.82044
[20] Carlen, EA; Esposito, R.; Lebowitz, JL; Marra, R.; Mouhot, R., Uniqueness of the Non-equilibrium steady state for a 1d BGK model in Kinetic theory, Acta Appl. Math. (2019) · Zbl 1459.35306 · doi:10.1007/s10440-019-00290-0
[21] Cercignani, C.; Esposito, R.; Marra, R., The Milne problem with a force term, Transp. Theory Stat. Phys., 27, 1-33 (1998) · Zbl 0899.76319
[22] Cercignani, C.; Illner, R.; Pulvirenti, M., The Mathematical Theory of Dilute Gases (1994), New York: Springer, New York · Zbl 0813.76001
[23] De Masi, A.; Esposito, R.; Lebowitz, JL, Incompressible Navier-Stokes and Euler limits of the Boltzmann equation, Commun. Pure Appl. Math., 42, 1189-1214 (1989) · Zbl 0689.76024
[24] Di Perna, RJ; Lions, PL, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. Math., 130, 321-366 (1989) · Zbl 0698.45010
[25] DiPerna, RJ; Lions, PL, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98, 511-547 (1989) · Zbl 0696.34049
[26] Desvillettes, L.; Villani, C., On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math., 159, 2, 245-316 (2005) · Zbl 1162.82316
[27] Drazin, PG; Reid, WH, Hydrodynamic Instability (1981), Cambridge: Cambridge University Press, Cambridge · Zbl 0449.76027
[28] Duan, R.; Huang, F.; Wang, Y.; Zhang, Z., Effects of soft interaction and non-isothermal boundary upon long-time dynamics of rarefied gas, Arch. Ration. Mech. Anal., 187, 287-339 (2019)
[29] Esposito, R.; Garrido, P.; Lebowitz, JL; Marra, R., Diffusive limit for a Boltzmann-like equation with non conserved momentum, Nonlinearity, 32, 4834-4852 (2019) · Zbl 1427.82033 · doi:10.1088/1361-6544/ab395a
[30] Esposito, R.; Guo, Y.; Kim, C.; Marra, R., Non-Isothermal boundary in the Boltzmann theory and fourier law, Commun. Math. Phys., 323, 177-239 (2013) · Zbl 1280.82009
[31] Esposito, R.; Guo, Y.; Kim, C.; Marra, R., Stationary solutions to the Boltzmann equation in the hydrodynamic limit, Ann. PDE, 4, 1-119 (2018) · Zbl 1403.35195
[32] Esposito, R.; Guo, Y.; Marra, R., Hydrodynamic limit of a kinetic gas flow past an obstacle, Commun. Math. Phys., 364, 765-823 (2018) · Zbl 1400.82217
[33] Esposito, R.; Lebowitz, JL; Marra, R., Hydrodynamic limit of the stationary Boltzmann equation in a slab, Commun. Math. Phys., 160, 49-80 (1994) · Zbl 0790.76072
[34] Esposito, R.; Lebowitz, JL; Marra, R., The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation, J. Stat. Phys., 78, 389-412 (1995) · Zbl 1078.82525
[35] Esposito, R.; Lebowitz, JL; Marra, R., Solutions to the Boltzmann equation in the Boussinesq regime, J. Stat. Phys., 90, 1129-1178 (1998) · Zbl 0932.76079
[36] Finn, R., Estimates at infinity for stationary solutions of the Navier-Stokes equations, Bull. Math. Soc. Sci. Math. Phys. Repub. Pop. Roum., 3, 51, 387-418 (1959) · Zbl 0106.39402
[37] Galdi, GP, An Introduction to the Mathematical Theory of the Navier-Stokes Equations (2011), New York: Springer, New York · Zbl 1245.35002
[38] Golse, F., Hydrodynamic Limits, 699-717 (2005), Zürich: European Mathematical Society, Zürich · Zbl 1115.82028
[39] Golse, F.; Lions, PL; Perthame, B.; Sentis, R., Regularity of the moments of the solution of a transport equation, J. Funct. Anal., 76, 110-125 (1988) · Zbl 0652.47031
[40] Golse, F.; Saint-Raymond, L., The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, Invent. Math., 155, 81-161 (2004) · Zbl 1060.76101
[41] Guiraud, JP, Probleme aux limites intérieur pour l’équation de Boltzmann linéaire, J. Méc., 9, 183-231 (1970) · Zbl 0245.76061
[42] Guiraud, JP, Probleme aux limites intérieur pour l’équation de Boltzmann en régime stationnaire, faiblement non linéaire, J. Méc., 11, 443-490 (1972) · Zbl 0245.76061
[43] Guo, Y., Decay and continuity of the Boltzmann equation in bounded domains, Arch. Ration. Mech. Anal., 197, 713-809 (2010) · Zbl 1291.76276
[44] Guo, Y.; Jang, J.; Jiang, N., Acoustic limit for the Boltzmann equation in optimal scaling, Commun. Pure Appl. Math., 63, 337-361 (2010) · Zbl 1187.35149
[45] Guo, Y.; Kim, C.; Tonon, D.; Trescases, A., Regularity of the Boltzmann equation in convex domains, Invent. Math., 207, 115-290 (2017) · Zbl 1368.35199
[46] Guo, Y.; Kim, C.; Tonon, D.; Trescases, A., BV regularity of the Boltzmann equation in non-convex domains, Arch. Rational. Mech. Anal., 127, 1045-1124 (2016) · Zbl 1334.35200
[47] Joseph, DD, On the stability of the Boussinesq equation, Arch. Rat. Mech. Anal., 20, 59-71 (1965) · Zbl 0136.23402
[48] Hilbert, D., Begründung der kinetischen Gastheorie, Math. Ann., 72, 331-407 (1916) · JFM 43.1055.03
[49] Hilbert, D., Grundzügeiner Allgemeinen Theorie der Linearen Integralgleichungen (1953), New York: Chelsea, New York · Zbl 0050.10201
[50] Kim, C., Formation and propagation of discontinuity for Boltzmann equation in non-convex domains, Commun. Math. Phys., 308, 641-701 (2011) · Zbl 1237.35126
[51] Kogan, M-N; Galkin, VS; Fridlender, OG, Stresses produced in gases by tem- perature and concentration inhomogeneities. New types of free convection, Sov. Phys. Uspekhi, 19, 5, 420-428 (1976)
[52] Krylov, NV, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces (2008), Providence: American Mathematical Society, Providence · Zbl 1147.35001
[53] Lachowicz, M., On the initial layer and the existence theorem for the nonlinear Boltzmann equation, Math. Methods Appl. Sci., 9, 3, 27-70 (1987) · Zbl 0632.45005
[54] Maslova, N., Nonlinear Evolution Equations (1993), Singapore: World Scientific, Singapore · Zbl 0846.60099
[55] Oseen, CW, Über die Stokes’sche formel, und über eine verwandte Aufgabe in der Hydrodynamik, Arkiv för Matematik, Astronomi och Fysik, 6, 29, 1-20 (1910) · JFM 41.0832.02
[56] Saint-Raymond, L., Hydrodynamic Limits of the Boltzmann Equation (2009), Berlin: Springer, Berlin · Zbl 1171.82002
[57] Sone, Y., Molecular Gas Dynamics. Theory, Techniques, and Applications (2007), Boston: Birkhäuser Boston, Inc., Boston · Zbl 1144.76001
[58] Thomson, W., On ship waves, Inst. Mech. Eng. Proc., 38, 409-434 (1887)
[59] Ukai, S. : Solutions to the Boltzmann equations. In: Pattern and Waves-Qualitative Analysis of Nonlinear Differential Equations, North Holland pp. 37-96 (1986) · Zbl 0633.76078
[60] Ukai, S., On the existence of global solutions of a mixed problem for the nonlinear Boltzmann equation, Proc. Jpn Acad. A, 53, 179-184 (1974) · Zbl 0312.35061
[61] Ukai, S.; Asano, K., Steady solutions of the Boltzmann equation for a gas flow past an obstacle. I., Existence Arch. Rational Mech. Anal., 84, 249-291 (1983) · Zbl 0538.76070
[62] Ukai, S.; Asano, K., Steady solutions of the Boltzmann equation for a gas flow past an obstacle. II., Stab. Publ. Res. Inst. Math. Sci., 22, 1035-1062 (1986) · Zbl 0627.76089
[63] Ukai, S.; Yang, T.; Zhao, H., Stationary solutions to the exterior problems for the Boltzmann equation. I., Existence Discrete Contin. Dyn. Syst., 23, 495-520 (2009) · Zbl 1156.76049
[64] Ukai, S.; Yang, T.; Zhao, H., Exterior Problem for the Boltzmann equation with temperature difference, Commun. Pure Appl. Anal., 8, 473-491 (2009) · Zbl 1157.82037
[65] Villani, C.; Serre, D.; Friedlander, S., A review of mathematical problems in Collisional Kinetic theory, Handbook of Fluid Mechanics (2003), New York: Springer, New York
[66] Villani, C., Hypocoercivity, Mem. Am. Math. Soc., 202, 950, 4-141 (2009) · Zbl 1197.35004
[67] Wu, L., Hydrodynamic limit with geometric correction of stationary Boltzmann equation, J. Differ. Equ., 260, 7152-7249 (2016) · Zbl 1336.35272
[68] Wu, L.; Guo, Y., Geometric correction for diffusive expansion of steady neutron transport equation, Commun. Math. Phys., 336, 1473 (2015) · Zbl 1318.35128
[69] Yang, X., Asymptotic behavior on the Milne problem with a force term, J. Differ. Eq., 252, 4656-4678 (2012) · Zbl 1238.35082
[70] Yu, S-H, Stochastic formulation for the initial-Boundary value problems of the Boltzmann equation, Arch. Ration. Mech. Anal., 192, 217-274 (2009) · Zbl 1419.76567
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.