×

Elliptic systems of \(p\)-Laplacian type. (English) Zbl 1484.35244

Summary: We prove an existence result for solutions of nonlinear \(p\)-Laplacian systems with data in generalized form: \[ \begin{cases} -\mathrm{div}\Phi(Du-\Theta(u))&=f(x,u,Du)\quad\text{in }\Omega\\ \hfill u&=0\quad\text{on }\partial\Omega \end{cases} \] by the theory of Young measures.

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35J57 Boundary value problems for second-order elliptic systems
35A01 Existence problems for PDEs: global existence, local existence, non-existence
Full Text: DOI

References:

[1] A. Abassi, A. El Hachimi and A. Jamea, Entropy solutions to nonlinear Neumann problems with \(L^1\)-data, Int. J. Math. Statist. 2 (2008), 4-17. · Zbl 1137.35033
[2] E. Azroul and F. Balaadich, Weak solutions for generalized \(p\)-Laplacian systems via Young measures, Moroccan J. of Pure and Appl. Anal. (MJPAA), 4 (2) (2018, 77-84. · Zbl 07880091
[3] E. Azroul and F. Balaadich, Quasilinear elliptic systems in perturbed form, Int. J. Nonlinear Anal. Appl. 10 (2019) No. 2, 255-266. · Zbl 1449.35226
[4] E. Azroul and F. Balaadich, A weak solution to quasilinear elliptic problems with perturbed gradient, Rend. Circ. Mat. Palermo, II. Ser 70, 151-166 (2021). https://doi.org/10.1007/s12215-020-00488-4 · Zbl 1465.35189
[5] J. M. Ball, A version of the fundamental theorem for Young measures. In: PDEs and Continuum Models of Phase Transitions (Nice, 1988). Lecture Notes in Phys, 344 (1989), 207-215. · Zbl 0991.49500
[6] F. Crispo, C-R. Grisanti and P. Maremont, On the high regularity of solutions to the p-Laplacian boundary value problem in exterior domains, Ann. Math. Pure Appl. 195 (2016), 821-834. · Zbl 1341.35082
[7] E. DiBenedetto and J. Manfredi, On the Higher Integrability of the Gradient of Weak Solutions of Certain Degenerate Elliptic Systems, American Journal of Mathematics, 115 (5) (1993), 1107-1134. · Zbl 0805.35037
[8] L C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, Am. Math. Soc., New York 1990. · Zbl 0698.35004
[9] N. Hungerbühler, Quasilinear elliptic systems in divergence form with weak monotonicity, New York J. Math. 5 (1999), 83-90. · Zbl 0920.35060
[10] T. Iwaniec, Projections onto gradients fields and Lp-estimates for degenrated elliptic operators, Studia Math., 75 (3) (1983), 293-312. · Zbl 0552.35034
[11] G M. Lieberman, The natural generalizationj of the natural conditions of ladyzhenskaya and uraltseva for elliptic equations, Commun. In. Partial Differential Equations. 16(2&3) (1991), 311-361. · Zbl 0742.35028
[12] P. Pucci and R. Servadei, On weak solutions for \(p\)-Laplacian equations with weights, Rend. Lincei Mat. Appl. 18 (2007), 257-267. · Zbl 1223.35128
[13] M. Struwe, Variational Methods, Springer Verlag Berlin, Heidelberg, New York, second edition 1996. · Zbl 0864.49001
[14] H. Beirão da Veiga and F. Crispo, On the global \(W^{2,q}\) regularity for nonlinear N-systems of the \(p\)-Laplacian type in n space variables, Nonlinear Anal. 75 (2012), 4346-4354. · Zbl 1243.35059
[15] L. Wei and R P. Agarwal, Existence of solutions to nonlinear Neumann boundary value problems with generalized p-Laplacian operator, Comput. Math. Appl., 56 (2008), 530-541. · Zbl 1155.35360
[16] E. Zeidler, Nonlinear functional analysis and its application, Volume I. Springer, 1986. · Zbl 0583.47050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.