×

A weak solution to quasilinear elliptic problems with perturbed gradient. (English) Zbl 1465.35189

Summary: We consider weak solutions to the Dirichlet problem \begin{align*} \left\{\begin{array}{ll} -\operatorname{div}A\big (x,Du-\varTheta (u)\big)=f &\text{ in }\varOmega,\\ u=0 &\text{ on }\partial\varOmega, \end{array} \right. \end{align*} where \(\varTheta:\mathbb{R}^m\rightarrow\mathbb{M}^{m\times n}\) is a continuous function assumed to satisfy a Lipschitz condition. Based on the theory of Young measures, we prove the existence result when \(f\in W^{-1,p'}(\varOmega ;\mathbb{R}^m)\).

MSC:

35J57 Boundary value problems for second-order elliptic systems
35J62 Quasilinear elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
Full Text: DOI

References:

[1] Azroul, E.; Balaadich, F., Weak solutions for generalized p-Laplacian systems via Young measures, Moroc. J. Pure Appl. Anal., 4, 2, 77-84 (2018) · Zbl 07880091 · doi:10.1515/mjpaa-2018-0008
[2] Azroul, E.; Balaadich, F., Quasilinear elliptic systems in perturbed form, Int. J. Nonlinear Anal. Appl., 10, 2, 255-266 (2019) · Zbl 1449.35226
[3] Ball, J.M.: A version of the fundamental theorem for Young measures. In: Rascle M., Serre D., Slemrod M. (eds) PDEs and continuum models of phase transitions (Nice, 1988). Lecture Notes in Physics, vol. 344, pp. 207-215. Springer, Berlin (1989) · Zbl 0991.49500
[4] Bisci, GM; Repovs̆, D., Multiple solutions for elliptic equations involving a general operator in divergence form, Ann. Acad. Sci. Fenn. Math., 39, 1, 259-273 (2014) · Zbl 1296.35029 · doi:10.5186/aasfm.2014.3909
[5] Breit, D.; Cianchi, A.; Diening, L.; Kuusi, T.; Schwarzaker, S., The p-Laplace system with right-hand side in divergence form: inner and up to the boundary pointwise estimates, Nonlinear Anal., 153, 200-212 (2017) · Zbl 1370.35064 · doi:10.1016/j.na.2016.06.011
[6] Bulíček, M., Diening, L., Schwarzacher, S.: Existence, uniqueness and optimal regularity results for very weak solutions to nonlinear elliptic systems. Preprint MORE/2015/03 (2015) · Zbl 1347.35117
[7] Bulíček, M.; Schwarzacher, S., Existence of very weak solutions to elliptic systems of \(p\)-Laplacian type, Calc. Var. Partial Differ. Equ., 55, 52 (2016) · Zbl 1347.35111 · doi:10.1007/s00526-016-0986-7
[8] Cianchi, A.; Maz’ya, V., Optimal second-order regularity for the p-Laplace system, J. Math. Pures Appl. (2019) · Zbl 1437.35404 · doi:10.1016/j.matpur.2019.02.015
[9] Cupini, G.; Marcellini, P.; Mascolo, E., Existence and regularity for elliptic equations under \(p, q\)-growth, Adv. Differ. Equ., 19, 693-724 (2014) · Zbl 1305.35041
[10] Cupini, G.; Marcellini, P.; Mascolo, E., Nonuniformly elliptic energy integrals with \(p, q\)-growth, Nonlinear Anal., 177, 312-324 (2018) · Zbl 1403.49033 · doi:10.1016/j.na.2018.03.018
[11] DiBenedetto, E.; Manfredi, J., On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, Am. J. Math., 115, 5, 1107-1134 (1993) · Zbl 0805.35037 · doi:10.2307/2375066
[12] Dreyfuss, P.; Hungerbühler, N., Results on a Navier-Stokes system with applications to electrorheological fluid flow, Int. J. Pure Appl. Math., 14, 2, 241-271 (2004) · Zbl 1217.35135
[13] Eleuteri, M.; Marcellini, P.; Mascolo, E., Lipschitz estimates for systems with ellipticity conditions at infnity, Ann. Math. Pura Appl., 195, 1575-1603 (2016) · Zbl 1354.35035 · doi:10.1007/s10231-015-0529-4
[14] Evans, L.C.: Weak convergence methods for nonlinear partial differential equations. Number 74 (1990) · Zbl 0698.35004
[15] Hungerbühler, N., A refinement of Ball’s theorem on Young measures, N. Y. J. Math., 3, 48-53 (1997) · Zbl 0887.46010
[16] Hungerbühler, N., Quasilinear elliptic systems in divergence form with weak monotonicity, N. Y. J. Math., 5, 83-90 (1999) · Zbl 0920.35060
[17] Hungerbühler, N., Quasilinear parabolic systems in divergence form with weak monotonicity, Duke Math. J., 107, 3, 497-519 (2001) · Zbl 1012.35037 · doi:10.1215/S0012-7094-01-10733-3
[18] Landes, R., Solvability of perturbed elliptic equations with critical growth exponent for the gradient, J. Math. Anal. Appl., 139, 63-77 (1989) · Zbl 0691.35038 · doi:10.1016/0022-247X(89)90230-8
[19] Lieberman, GM, The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations, Commun. Partial Differ. Equ., 16, 311-361 (1991) · Zbl 0742.35028 · doi:10.1080/03605309108820761
[20] Marcellini, P.; Papi, G., Nonlinear elliptic systems with general growth, J. Differ. Equ., 221, 412-443 (2006) · Zbl 1330.35131 · doi:10.1016/j.jde.2004.11.011
[21] Miri, SE-H, Existence of solutions to quasilinear elliptic problems with nonlinearity and absorption-reaction gradient term, Electr. J. Differ. Equ., 32, 1-12 (2014) · Zbl 1292.35134
[22] Papageorgiou, NS; Rădulescu, VD; Repovs̆, DD, Nonlinear Analysis—Theory and Methods (2019), Cham: Springer, Cham · Zbl 1414.46003 · doi:10.1007/978-3-030-03430-6
[23] Repovs̆, DD, Asymptotics for singular solutions of quasilinear elliptic equations with an absorption term, J. Math. Anal. Appl., 395, 1, 78-85 (2012) · Zbl 1250.35109 · doi:10.1016/j.jmaa.2012.05.017
[24] Rindler, F., Calculus of Variations. Universitext (2018), Cham: Springer, Cham · Zbl 1402.49001 · doi:10.1007/978-3-319-77637-8
[25] Struwe, M., Variational Methods (1996), Berlin: Springer, Berlin · Zbl 0864.49001 · doi:10.1007/978-3-662-03212-1
[26] Yosida, K., Functional Analysis (1980), Berlin: Springer, Berlin · Zbl 0435.46002
[27] Zeidler, E., Nonlinear Functional Analysis and Its Applications (1986), Berlin: Springer, Berlin · Zbl 0583.47050 · doi:10.1007/978-1-4612-4838-5
[28] Zhang, KW, On the Dirichlet problem for a class of quasilinear elliptic systems of partial differential equations in divergence form, Partial Differ. Equ., 1306, 262-277 (1988) · Zbl 0672.35026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.