×

The Hahn embedding theorem for a class of residuated semigroups. (English) Zbl 1484.06060

Stud. Log. 108, No. 6, 1161-1206 (2020); correction ibid. 109, No. 4, 887-901 (2021).
Summary: Hahn’s embedding theorem asserts that linearly ordered abelian groups embed in some lexicographic product of real groups. Hahn’s theorem is generalized to a class of residuated semigroups in this paper, namely, to odd involutive commutative residuated chains which possess only finitely many idempotent elements. To this end, the partial lexicographic product construction is introduced to construct new odd involutive commutative residuated lattices from a pair of odd involutive commutative residuated lattices, and a representation theorem for odd involutive commutative residuated chains which possess only finitely many idempotent elements, by means of linearly ordered abelian groups and the partial lexicographic product construction is presented.

MSC:

06F20 Ordered abelian groups, Riesz groups, ordered linear spaces
06F05 Ordered semigroups and monoids
06D75 Other generalizations of distributive lattices

References:

[1] Agliano, P.; Montagna, F., Varieties of BL-algebras I: general properties, Journal of Pure and Applied Algebra, 181, 2-3, 105-129 (2003) · Zbl 1034.06009 · doi:10.1016/S0022-4049(02)00329-8
[2] Blok, W., and D. Pigozzi, Algebraizable Logics, Memoirs of the AMS 77(396), 1989. · Zbl 0664.03042
[3] Blyth, T. S., and M. F. Janowitz, Residuation Theory, Pergamon Press, 1972. · Zbl 0301.06001
[4] Casari, E., Comparative logics and Abelian \(\ell \)-groups, in R. Ferro et al. (eds.), Logic Colloquium 88, North Holland, Amsterdam, 1989, pp. 161-190. · Zbl 0698.03039
[5] Cignoli, R.; D’Ottaviano, IML; Mundici, D., Algebraic Foundations of Many-Valued Reasoning (2000), Dordrecht: Kluwer, Dordrecht · Zbl 0937.06009 · doi:10.1007/978-94-015-9480-6
[6] Conrad, PF; Harvey, J.; Holland, WC, The Hahn embedding theorem for lattice-ordered groups, Transactions of the American Mathematical Society, 108, 143-169 (1963) · Zbl 0126.05002 · doi:10.1090/S0002-9947-1963-0151534-0
[7] Galatos, N., P. Jipsen, T. Kowalski, and H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, 532 pp., Elsevier, Amsterdam, 2007. · Zbl 1171.03001
[8] Galatos, N.; Raftery, JG, A category equivalence for odd Sugihara monoids and its applications, Journal of Pure and Applied Algebra, 216, 2177-2192 (2012) · Zbl 1279.03043 · doi:10.1016/j.jpaa.2012.02.006
[9] Galatos, N.; Raftery, JG, Idempotent residuated structures: Some category equivalences and their applications, Transactions of the American Mathematical Society, 367, 3189-3223 (2015) · Zbl 1402.06005 · doi:10.1090/S0002-9947-2014-06072-8
[10] Galatos, N.; Tsinakis, C., Generalized MV-algebras, Journal of Algebra, 283, 254-291 (2005) · Zbl 1063.06008 · doi:10.1016/j.jalgebra.2004.07.002
[11] Gierz, G. K., K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, and D. S. Scott, Continuous Lattices and Domains, Encyclopedia of Mathematics and Its Applications 93, Cambridge University Press, 2003. · Zbl 1088.06001
[12] Hahn, H., Über die nichtarchimedischen Grössensysteme, S.B. Akad. Wiss. Wien. IIa, 116, 601-655 (1907) · JFM 38.0501.01
[13] Hájek, P., Metamathematics of Fuzzy Logic (1998), Dordrecht: Kluwer Academic Publishers, Dordrecht · Zbl 0937.03030 · doi:10.1007/978-94-011-5300-3
[14] Jenei, S., On the geometry of associativity, Semigroup Forum, 74, 439-466 (2007) · Zbl 1131.20047 · doi:10.1007/s00233-006-0673-7
[15] Jipsen, P.; Montagna, F., Embedding theorems for classes of GBL-algebras, Journal of Pure and Applied Algebra, 214, 1559-1575 (2010) · Zbl 1192.06012 · doi:10.1016/j.jpaa.2009.11.015
[16] Johnstone, PT, Stone spaces (1982), Cambridge: Cambridge University Press, Cambridge · Zbl 0499.54001
[17] Kühr, Jan, Representable pseudo-BCK-algebras and integral residuated lattices, Journal of Algebra, 317, 1, 354-364 (2007) · Zbl 1140.06008 · doi:10.1016/j.jalgebra.2007.07.003
[18] Lawson, J., Fifty Years of Topological Algebra, Seminar Sophus Lie XXXIV, Workshop in Honor of Karl Hofmann’s 75th Birthday, Darmstadt, October 5-6, 2007.
[19] Meyer, R. K., and J. K. Slaney, Abelian logic (from A to Z), in R. Routley et al., (eds.), Paraconsistent Logic: Essays on the Inconsistent, Philosophia, Munich, 1989, pp. 245-288. · Zbl 0694.03019
[20] Mostert, PS; Shields, AL, On the structure of semigroups on a compact manifold with boundary, Ann. Math., 65, 117-143 (1957) · Zbl 0096.01203 · doi:10.2307/1969668
[21] Paoli, F.; Spinks, M.; Veroff, R., Abelian Logic and the Logics of Pointed Lattice-Ordered Varieties, Logica Universalis, 2, 2, 209-233 (2008) · Zbl 1162.03036 · doi:10.1007/s11787-008-0034-2
[22] Ward, M., and R. P. Dilworth, Residuated lattices, Transactions of the American Mathematical Society 45:335-354, 1939. · Zbl 0021.10801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.