×

Generalized MV-algebras. (English) Zbl 1063.06008

The authors define a generalized MV-algebra (GMV-algebra for short) as a residuated lattice satisfying the identities \(x/((x\vee y)\setminus x)=x\vee y=(x/((x\vee y))\setminus x\). A closure operator \(\gamma\) on a residuated lattice \(\mathbf L\) such that \(\gamma(a)\gamma(b)\leqq \gamma(ab)\) for all \(a,b\in L\) is called a nucleus on \(L\); the image \(L_\gamma\) of \(\gamma\) is endowed with a residuated lattice structure \(\mathbf L_\gamma=(L,\wedge,\vee_\gamma, \circ_\gamma, \setminus, /, \gamma(e))\), where \(\gamma(a)\vee_\gamma \gamma(b)= \gamma(a\vee b)\) and \(\gamma(a)\circ_\gamma \gamma(b)=\gamma(ab)\).
The fundamental result of the paper is the following theorem: A residuated lattice \(\mathbf M\) is a GMV-algebra if and only if there are residuated lattices \(\mathbf G, \mathbf L\), such that \(\mathbf G\) is an \(\ell\)-group, \(\mathbf L\) is the negative cone of an \(\ell\)-group, \(\gamma\) is a nucleus on \(\mathbf L\) and \(\mathbf M=\mathbf G\oplus \mathbf L_\gamma\) (where \(\oplus\) denotes the operation of the direct sum). As a consequence, the authors obtain a categorical equivalence that generalizes the results of Mundici and Dvurečenskij concerning the functor \(\Gamma\). Further, they prove that the equational theory of the variety of GMV-algebras is decidable.

MSC:

06D35 MV-algebras
06F15 Ordered groups
03B25 Decidability of theories and sets of sentences
Full Text: DOI

References:

[1] Anderson, M.; Feil, T., Lattice-Ordered Groups: An Introduction (1988), Reidel Publishing Company · Zbl 0636.06008
[2] Bahls, P.; Cole, J.; Galatos, N.; Jipsen, P.; Tsinakis, C., Cancellative residuated lattices, Algebra Universalis, 50, 1, 83-106 (2003) · Zbl 1092.06012
[3] Bigard, A.; Keimel, K.; Wolfenstein, S., Groupes at Anneaux Réticulés, Lecture Notes in Math., vol. 608 (1977), Springer-Verlag: Springer-Verlag Berlin · Zbl 0384.06022
[4] Blount, K.; Tsinakis, C., The structure of residuated lattices, Internat. J. Algebra Comput., 13, 4, 437-461 (2003) · Zbl 1048.06010
[5] Bosbach, B., Residuation groupoids, Result. Math., 5, 107-122 (1982) · Zbl 0513.06007
[6] Bosbach, B., Concerning cone algebras, Algebra Universalis, 15, 58-66 (1982) · Zbl 0507.06013
[7] Chang, C. C., Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88, 467-490 (1958) · Zbl 0084.00704
[8] Cignoli, R.; D’Ottaviano, I.; Mundici, D., Algebraic Foundations of Many-Valued Reasoning, Trends in Logic—Studia Logica Library, vol. 7 (2000), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0937.06009
[9] Cole, J., Non-distributive cancellative residuated lattices, (Martinez, J., Ordered Algebraic Structures (2002), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 205-212 · Zbl 1073.06006
[10] Dvurečenskij, A., Pseudo MV-algebras are intervals in \(l\)-groups, J. Austr. Math. Soc., 72, 3, 427-445 (2002) · Zbl 1027.06014
[11] Fuchs, L., Partially Ordered Algebraic Systems (1963), Pergamon Press: Pergamon Press Oxford · Zbl 0137.02001
[12] Galatos, N., The undecidability of the word problem for distributive residuated lattices, (Martinez, J., Ordered Algebraic Structures (2002), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 231-243 · Zbl 1073.06007
[13] N. Galatos, Minimal varieties of residuated lattices, Algebra Universalis, in press; N. Galatos, Minimal varieties of residuated lattices, Algebra Universalis, in press · Zbl 1082.06011
[14] Galatos, N., Equational bases for joins of residuated-lattice varieties, Studia Logica, 76, 2, 227-240 (2004) · Zbl 1068.06007
[15] Georgescu, G.; Iorgulescu, A., Pseudo-MV algebras: a noncommutative extension of MV algebras, (Information Technology. Information Technology, Bucharest, 1999 (1999), Inforec: Inforec Bucharest), 961-968 · Zbl 0985.06007
[16] Georgescu, G.; Iorgulescu, A., Pseudo-MV algebras, G.C. Moisil memorial issue. G.C. Moisil memorial issue, Mult.-Valued Log., 6, 1-2, 95-135 (2001) · Zbl 1014.06008
[17] Hájek, P., Metamathematics of Fuzzy Logic, Trends in Logic—Studia Logica Library, vol. 4 (1998), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0937.03030
[18] Hart, J.; Rafter, L.; Tsinakis, C., The structure of commutative residuated lattices, Internat. J. Algebra Comput., 12, 4, 509-524 (2002) · Zbl 1011.06006
[19] Holland, W. C.; McCleary, S. H., Solvability of the word problem in free lattice-ordered groups, Houston J. Math., 5, 1, 99-105 (1979) · Zbl 0387.06011
[20] Jipsen, P.; Tsinakis, C., A survey of residuated lattices, (Martinez, J., Ordered Algebraic Structures (2002), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 19-56 · Zbl 1070.06005
[21] Jónsson, B., Algebras whose congruence lattices are distributive, Math. Scand., 21, 110-121 (1967) · Zbl 0167.28401
[22] Jónsson, B.; Tsinakis, C., Products of classes of residuated structures, Studia Logica, 77, 2, 267-292 (2004) · Zbl 1072.06003
[23] Mac Lane, S., Categories for the Working Mathematician, Grad. Texts in Math. (1997), Springer · Zbl 0906.18001
[24] Mundici, D., Interpretation of AF C*-algebras in Łukasiewicz sentential calculus, J. Funct. Anal., 65, 1, 15-63 (1986) · Zbl 0597.46059
[25] Rosenthal, K. I., Quantales and Their Applications, Pitman Res. Notes Math. Ser. (1990), Longman · Zbl 0703.06007
[26] Schmidt, J.; Tsinakis, C., Relative pseudo-complements, join-extensions and meet-retractions, Math. Z., 157, 271-284 (1977) · Zbl 0351.06010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.