×

Stability analysis of singular time-delay systems using the auxiliary function-based double integral inequalities. (English) Zbl 1483.93469

Summary: Recently, there have been a few developments reported on using the Wirtinger/free-matrix-based single integral inequality to stability problem of singular time-delay systems but there has been no report on the double ones. This paper presents an extension on applying the auxiliary function-based double integral inequality to the problem. Furthermore, an extension of the delay-dependent matrix technique into the single integral term of the Lyapunov-Krasovskii function to reduce more the conservatism has also been presented. By proposing an extended Lyapunov-Krasovskii functional (LKF) with triple integral terms and three delay-dependent matrices, a new delay-derivative-dependent stability criterion is derived. The effectiveness of the obtained result is illustrated through a numerical example.

MSC:

93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C43 Delay control/observation systems
Full Text: DOI

References:

[1] Chen, W.; Gao, F., Stability analysis of systems via a new double free-matrix-based integral inequality with interval time-varying delay, International Journal of Systems Science, 50, 14, 2663-2672 (2019) · Zbl 1483.93462 · doi:10.1080/00207721.2019.1672118
[2] Chen, W.; Xu, S.; Li, Y.; Zhang, Z., Stability analysis of neutral systems with mixed interval time-varying delays and nonlinear disturbances, Journal of the Franklin Institute, 357, 6, 3721-3740 (2020) · Zbl 1437.93099 · doi:10.1016/j.jfranklin.2020.02.038
[3] Dai, L., Singular control systems (1989), Springer-Verlag · Zbl 0669.93034
[4] Ech-charqy, A.; Ouahi, M.; Tissir, E. H., Delay-dependent robust stability criteria for singular time-delay systems by delay-partitioning approach, International Journal of Systems Science, 49, 2957-2967 (2018) · Zbl 1482.93450 · doi:10.1080/00207721.2018.1529255
[5] Feng, Z.; Lam, J., On reachable set estimation of singular systems, Automatica, 52, 146-153 (2015) · Zbl 1309.93024 · doi:10.1016/j.automatica.2014.11.007
[6] Feng, Z.; Lam, J.; Gao, H., α-Dissipativity analysis of singular time-delay systems, Automatica, 47, 11, 2548-2552 (2011) · Zbl 1228.93039 · doi:10.1016/j.automatica.2011.06.025
[7] Fridman, E., Introduction to time delay systems: analysis and control (2014), Birkhauser · Zbl 1303.93005
[8] Fridman, E.; Shaked, U.; Liu, K., New conditions for delay-derivative-dependent stability, Automatica, 45, 11, 2723-2727 (2009) · Zbl 1180.93080 · doi:10.1016/j.automatica.2009.08.002
[9] Gu, K.; Kharitonov, V. L.; Chen, J., Stability of time-delay systems (2003), Birkhauser · Zbl 1039.34067
[10] Gyurkovics, E.; Kiss, K.; Nagy, I.; Takacs, T., Multiple summation inequalities and their application to stability analysis of discrete-time delay systems, Journal of the Franklin Institute, 54, 1, 123-144 (2017) · Zbl 1355.93139 · doi:10.1016/j.jfranklin.2016.10.006
[11] Gyurkovics, E.; Szabo-Varga, G.; Kiss, K., Stability analysis of linear systems with interval time-varying delays utilizing multiple integral inequalities, Applied Mathematics and Computation, 311, 164-177 (2017) · Zbl 1426.34097 · doi:10.1016/j.amc.2017.05.004
[12] Haidar, A.; Boukas, E. K., Exponential stability of singular systems with multiple time-varying delays, Automatica, 45, 2, 539-545 (2009) · Zbl 1158.93347 · doi:10.1016/j.automatica.2008.08.019
[13] Hien, L. V.; Vu, L. H.; Phat, V. N., Improved delay-dependent exponential stability of singular systems with mixed interval time-varying delays, IET Control Theory \(####\) Applications, 9, 9, 1364-1372 (2015) · doi:10.1049/iet-cta.2014.0731
[14] Hua, C.; Wu, S.; Yang, X.; Guan, X., Stability analysis of time-delay systems via free matrix-based double integral inequality, International Journal of Systems Science, 48, 2, 257-263 (2016) · Zbl 1359.93441 · doi:10.1080/00207721.2016.1177132
[15] Kwon, W.; Koo, B.; Lee, S., Novel Lyapunov-Krasovskii functional with delay-dependent matrix for stability of time-varying delay systems, Applied Mathematics and Computation, 320, 149-157 (2018) · Zbl 1426.93237 · doi:10.1016/j.amc.2017.09.036
[16] Lee, W. I.; Park, P. G., Second-order reciprocally convex approach to stability of systems with interval time-varying delays, Applied Mathematics and Computation, 229, 25, 245-253 (2014) · Zbl 1364.34103 · doi:10.1016/j.amc.2013.12.025
[17] Lee, T. H.; Park, M. J.; Park, J. H.; Kwon, O. M.; Jung, H. Y., On stability criteria for neural networks with time-varying delay using Wirtinger-based multiple integral inequality, Journal of the Franklin Institute, 352, 12, 5627-5645 (2015) · Zbl 1395.93444 · doi:10.1016/j.jfranklin.2015.08.024
[18] Lee, T. H.; Park, J. H.; Xu, S., Relaxed conditions for stability of time-varying delay systems, Automatica, 75, 11-15 (2017) · Zbl 1351.93122 · doi:10.1016/j.automatica.2016.08.011
[19] Li, T.; Tang, X.; Qian, W.; Fei, S., Mixed-delay-dependent stability for time-delay neutral system: an improved dynamic Lyapunov method, IET Control Theory \(####\) Applications, 13, 6, 869-877 (2019) · doi:10.1049/iet-cta.2018.6036
[20] Liu, G., New results on stability analysis of singular time-delay systems, International Journal of Systems Science, 48, 7, 1395-1403 (2017) · Zbl 1362.93109 · doi:10.1080/00207721.2016.1258598
[21] Liu, Z. Y.; Lin, C.; Chen, B., A neutral system approach to stability of singular time-delay systems, Journal of the Franklin Institute, 351, 4939-4948 (2014) · Zbl 1395.93466 · doi:10.1016/j.jfranklin.2014.08.007
[22] Liu, Z. Y.; Lin, C.; Chen, B., Admissibility analysis for linear singular systems with time-varying delays via neutral system approach, ISA Transactions, 61, 141-146 (2016) · doi:10.1016/j.isatra.2015.12.019
[23] Liu, K.; Seuret, A.; Xia, Y., Stability analysis of systems with time-varying delays via the second-order besse-Legendre inequality, Automatica, 76, 138-142 (2017) · Zbl 1352.93079 · doi:10.1016/j.automatica.2016.11.001
[24] Nam, P. T.; Luu, T. H., A new delay-variation-dependent stability criterion for delayed discrete-time systems, Journal of the Franklin Institute, 357, 11, 6951-6967 (2020) · Zbl 1447.93260 · doi:10.1016/j.jfranklin.2020.04.052
[25] Nam, P. T.; Pathirana, P. N.; Trinh, H., Discrete Wirtinger-based inequality and its application, Journal of the Franklin Institute, 352, 5, 1893-1905 (2015) · Zbl 1395.93448 · doi:10.1016/j.jfranklin.2015.02.004
[26] Park, P. G.; Ko, J. W.; Jeong, C., Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47, 1, 235-238 (2011) · Zbl 1209.93076 · doi:10.1016/j.automatica.2010.10.014
[27] Park, P. G.; Lee, W. I.; Lee, S. Y., Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems, Journal of the Franklin Institute, 352, 4, 1378-1396 (2015) · Zbl 1395.93450 · doi:10.1016/j.jfranklin.2015.01.004
[28] Protter, M. H.; Morrey, C. B., Intermediate calculus (1985), Springer-Verlag · Zbl 0555.26002
[29] Ren, Y.; Feng, Z.; Sun, G., Improved stability conditions for uncertain neutral-type systems with time-varying delays, International Journal of Systems Science, 47, 8, 1982-1993 (2015) · Zbl 1337.93068 · doi:10.1080/00207721.2015.1067337
[30] Seuret, A.; Gouaisbaut, F., Wirtinger-based integral inequality: application to time-delay systems, Automatica, 49, 9, 2860-2866 (2013) · Zbl 1364.93740 · doi:10.1016/j.automatica.2013.05.030
[31] Seuret, A.; Gouaisbaut, F.; Fridman, E., Stability of discrete-time systems with time-varying delays via a novel summation inequality, IEEE Transactions on Automatic Control, 60, 10, 2740-2745 (2015) · Zbl 1360.93612 · doi:10.1109/TAC.2015.2398885
[32] Sueret, A., & Gouaisbaut, F. (2016). Delay-dependent reciprocally convex combination lemma (Rapport LAAS n16006).
[33] Trinh, H.; Nam, P. T.; Pathirana, P. N.; Le, H. P., On backwards and forwards reachable sets bounding for perturbed time-delay systems, Applied Mathematics and Computation, 269, 664-673 (2015) · Zbl 1410.93017 · doi:10.1016/j.amc.2015.07.116
[34] Xu, S. Y.; Dooren, P. V.; Stefan, R.; Lam, J., Robust stability and stabilization for singular delay systems with state delay and parameter uncertainty, IEEE Transactions on Automatic Control, 47, 1122-1128 (2002) · Zbl 1364.93723 · doi:10.1109/TAC.2002.800651
[35] Xu, S.; Lam, J., Robust control and filtering of singular systems (2006), Springer · Zbl 1114.93005
[36] Zeng, H. B.; He, Y.; Wu, M.; She, J., Free-matrix-based integral inequality for stability analysis of systems with time-varying delay, IEEE Transactions on Automatic Control, 60, 10, 2768-2772 (2015) · Zbl 1360.34149 · doi:10.1109/TAC.2015.2404271
[37] Zhang, H.; Qiu, Z.; Xiong, L.; Jiang, G., Stochastic stability analysis for neutral-type Markov jump neural networks with additive time-varying delays via a new reciprocally convex combination inequality, International Journal of Systems Science, 50, 5, 970-988 (2019) · Zbl 1483.93699 · doi:10.1080/00207721.2019.1586005
[38] Zhao, N., Lin, C., & Chen, B. (2017). New delay-dependent stability criteria using improved double integral inequality for singular systems. In Proceedings of the 29th Chinese Control and Decision Conference (pp. 4234-4237).
[39] Zhi, Y. L.; He, Y.; Shen, J.; Wu, M., New stability criteria of singular systems with time-varying delay via free-matrix-based integral inequalities, International Journal of Systems Science, 49, 5, 1032-1039 (2018) · Zbl 1482.93447 · doi:10.1080/00207721.2018.1439123
[40] Zhi, Y. L., He, Y., & Wu, M. (2017). An improved stability criterion for singular systems with time-varying delay via a relaxed integral inequality. In Proceedings of the 36th Chinese Control Conference (pp. 180-183).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.