×

Stability analysis of systems via a new double free-matrix-based integral inequality with interval time-varying delay. (English) Zbl 1483.93462

Summary: This paper investigates the problem of delay-dependent stability analysis for systems with interval time-varying delay. By means of a new double free-matrix-based integral inequality and augmented Lyapunov-Krasovskii functionals containing as much information of time-varying delay as possible, a new stability criterion for systems is established. Firstly, by a double integral term two-step estimation approach and combined with single free-matrix-based integral inequalities, a stability criteria is presented. Then, compared with the double integral term two-step estimation approach, the proposed new double free-matrix-based integral inequality with more related time delays has potential to lead to a criterion with less conservatism. Finally, the validity of the presented method is demonstrated by two numerical examples.

MSC:

93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C43 Delay control/observation systems
Full Text: DOI

References:

[1] An, J.; Li, Z.; Wang, X., A novel approach to delay-fractional-dependent stability criterion for linear systems with interval delay, ISA Transactions, 53, 2, 210-219 (2014) · doi:10.1016/j.isatra.2013.11.020
[2] Chen, J.; Xu, S.; Chen, W.; Zhang, B.; Ma, Q.; Zou, Y., Two general integral inequalities and their applications to stability analysis for systems with time-varying delay, International Journal of Robust and Nonlinear Control, 26, 18, 4088-4103 (2016) · Zbl 1351.93103 · doi:10.1002/rnc.3551
[3] Chen, J.; Xu, S.; Zhang, B.; Liu, G., A note on relationship between two classes of integral inequalities, IEEE Transactions on Automatic Control, 62, 8, 4044-4049 (2017) · Zbl 1373.26025 · doi:10.1109/TAC.2016.2618367
[4] Das, D. K.; Ghosh, S.; Subudhi, B., An improved robust stability analysis for systems with two delays by extracting overlapping feature, Journal of Control and Decision, 2, 2, 124-141 (2015) · doi:10.1080/23307706.2015.1009504
[5] Gu, K. (2000). An integral inequality in the stability problem of time-delay systems. Decision and Control, Proceedings of the 39th IEEE conference (Vol. 3, pp. 2805-2810).
[6] Guo, L.; Gu, H.; Xing, J.; He, X., Asymptotic and exponential stability of uncertain system with interval delay, Applied Mathematics and Computation, 218, 19, 9997-10006 (2012) · Zbl 1245.93108 · doi:10.1016/j.amc.2012.03.074
[7] He, Y.; Wang, Q.; Lin, C.; Wu, M., Delay-range-dependent stability for systems with time-varying delay, Automatica, 43, 2, 371-376 (2007) · Zbl 1111.93073 · doi:10.1016/j.automatica.2006.08.015
[8] Hien, L. v.; Trinh, H., An enhanced stability criterion for time-delay systems via a new bounding technique, Journal of the Franklin Institute, 352, 10, 4407-4422 (2015) · Zbl 1395.93443 · doi:10.1016/j.jfranklin.2015.06.023
[9] Kim, J.-H., Further improvement of Jensen inequality and application to stability of time-delayed systems, Automatica, 64, 1, 121-125 (2016) · Zbl 1329.93123 · doi:10.1016/j.automatica.2015.08.025
[10] Lee, T. H.; Park, J. H.; Xu, S., Relaxed conditions for stability of time-varying delay systems, Automatica, 75, 1, 11-15 (2017) · Zbl 1351.93122 · doi:10.1016/j.automatica.2016.08.011
[11] Li, H.; Zhao, N.; Zhang, X.; Wang, X., Necessary exponential stability conditions for linear discrete time-delay systems and application, Journal of Control and Decision, 1, 1-14 (2018)
[12] Liu, Y.; Hu, L.; Shi, P., A novel approach on stabilization for linear systems with time-varying input delay, Applied Mathematics and Computation, 218, 10, 5937-5947 (2012) · Zbl 1243.93103 · doi:10.1016/j.amc.2011.11.056
[13] Park, P., A delay-dependent stability criterion for systems with uncertain time-invariant delays, IEEE Transactions on Automatic Control, 44, 4, 876-877 (1999) · Zbl 0957.34069 · doi:10.1109/9.754838
[14] Park, P.; Ko, J. W.; Jeong, C., Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47, 1, 235-238 (2011) · Zbl 1209.93076 · doi:10.1016/j.automatica.2010.10.014
[15] Park, P.; Lee, W. I.; Lee, S. Y., Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems, Journal of the Franklin Institute, 352, 4, 1378-1396 (2015) · Zbl 1395.93450 · doi:10.1016/j.jfranklin.2015.01.004
[16] Qian, W.; Cong, S.; Li, T.; Fei, S., Improved stability conditions for systems with interval time-varying delay, International Journal of Control, Automation and Systems, 10, 6, 1146-1152 (2012) · doi:10.1007/s12555-012-0609-9
[17] Qian, W.; Gao, Y.; Chen, Y.; Yang, J., The stability analysis of time-varying delayed systems based on new augmented vector method, Journal of the Franklin Institute, 356, 3, 1268-1286 (2019) · Zbl 1406.93240 · doi:10.1016/j.jfranklin.2018.10.027
[18] Richard, J. P., Time-delay systems: An overview of some recent advances and open problems, Automatica, 39, 10, 1667-1694 (2003) · Zbl 1145.93302 · doi:10.1016/S0005-1098(03)00167-5
[19] Seuret, A.; Gouaisbaut, F., Wirtinger-based integral inequality: Application to time-delay systems, Automatica, 49, 9, 2860-2866 (2013) · Zbl 1364.93740 · doi:10.1016/j.automatica.2013.05.030
[20] Seuret, A.; Gouaisbaut, F., Hierarchy of LMI conditions for the stability analysis of time-delay systems, Systems & Control Letters, 81, 1, 1-7 (2015) · Zbl 1330.93211 · doi:10.1016/j.sysconle.2015.03.007
[21] Shao, H., New delay-dependent stability criteria for systems with interval delay, Automatica, 45, 3, 744-749 (2009) · Zbl 1168.93387 · doi:10.1016/j.automatica.2008.09.010
[22] Souza, F. O.; Palhares, R. M., New delay-interval stability condition, International Journal of Systems Science, 45, 3, 300-306 (2013) · Zbl 1307.93310 · doi:10.1080/00207721.2012.720297
[23] Sun, J.; Liu, G. P.; Chen, J.; Rees, D., Improved delay-range-dependent stability criteria for linear systems with time-varying delays, Automatica, 46, 2, 466-470 (2010) · Zbl 1205.93139 · doi:10.1016/j.automatica.2009.11.002
[24] Wu, M.; He, Y.; She, J. H.; Liu, G. P., Delay-dependent criteria for robust stability of time-varying delay systems, Automatica, 40, 8, 1435-1439 (2004) · Zbl 1059.93108 · doi:10.1016/j.automatica.2004.03.004
[25] Zeng, H. B.; He, Y.; Wu, M.; She, J. H., Free-matrix based integral inequality for stability analysis of systems with time-varying delay, IEEE Transactions on Automatic Control, 60, 10, 2768-2772 (2015) · Zbl 1360.34149 · doi:10.1109/TAC.2015.2404271
[26] Zeng, H.-B.; He, Y.; Wu, M.; She, J. H., New results on stability analysis for systems with discrete distributed delay, Automatica, 60, 1, 189-192 (2015) · Zbl 1331.93166 · doi:10.1016/j.automatica.2015.07.017
[27] Zhang, X. M.; Han, Q. L.; Ge, X.; Ding, D., An overview of recent developments in Lyapunov-Krasovskii functionals and stability criteria for recurrent neural networks with time-varying delays, Neurocomputing, 313, 392-401 (2018) · doi:10.1016/j.neucom.2018.06.038
[28] Zhang, X. M.; Han, Q. L.; Seuret, A.; Gouaisbaut, F.; He, Y., Overview of recent advances in stability of linear systems with time-varying delays, IET Control Theory & Applications, 13, 1, 1-16 (2018) · Zbl 1434.93034 · doi:10.1049/iet-cta.2018.5188
[29] Zhang, X. M.; Han, Q. L.; Wang, J., Admissible delay upper bounds for global asymptotic stability of neural networks with time-varying delays, IEEE Transactions on Neural Networks and Learning Systems, 29, 11, 5319-5329 (2018) · doi:10.1109/TNNLS.2018.2797279
[30] Zhang, X. M.; Han, Q. L.; Wang, Z.; Zhang, B. L., Neuronal state estimation for neural networks with two additive time-varying delay components, IEEE Transactions on Cybernetics, 47, 10, 3184-3194 (2017) · doi:10.1109/TCYB.2017.2690676
[31] Zhang, C.-K.; He, Y.; Jiang, L.; Wu, M.; Zeng, H.-B., Stability analysis of systems with time-varying delay via relaxed integral inequalities, Systems & Control Letters, 92, 1, 52-61 (2016) · Zbl 1338.93290 · doi:10.1016/j.sysconle.2016.03.002
[32] Zhang, L.; He, L.; Song, Y., New results on stability analysis of delayed systems derived from extended Wirtinger’s integral inequality, Neurocomputing, 283, 1, 98-106 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.