×

Analysis of driving styles of a GP2 car via minimum lap-time direct trajectory optimization. (English) Zbl 1483.70044

Summary: This paper addresses the problem of the link between the driving style of an ideal driver, modelled as an optimal controller, and fundamental set-up parameters of a vehicle in the GP2 motorsport class. The aim is to evaluate quantitatively how set-up parameters, like distribution of aerodynamic loads, weight and roll stiffness between front and rear axles, affect the driving style, encoded in the shape of the optimal trajectory and in the acceleration, brake and steer inputs.
To this aim, we develop an optimization code that includes a double-track vehicle model capable of solving the minimum lap-time problem (MLTP) on a given track. The track is represented via NURBS curves and the MLTP is framed and solved as an optimal control problem by transcription into a nonlinear program using direct collocation. To assess the accuracy of the vehicle model and the optimization pipeline, we also validate our results against real telemetry data.
The developed software framework lends itself to easily perform both sensitivity analysis and concurrent trajectory planning and set-up parameter optimization: this is obtained by simple promotion of static parameters of interests to variables in the optimal control problem. Some results along these lines are also included.

MSC:

70Q05 Control of mechanical systems
49N90 Applications of optimal control and differential games
Full Text: DOI

References:

[1] Brayshaw, D. L.; Harrison, M. F., A quasi steady state approach to race car lap simulation in order to understand the effects of racing line and centre of gravity location, Proc. Inst. Mech. Eng., Part D, J. Automob. Eng., 219, 6, 725-739 (2005) · doi:10.1243/095440705X11211
[2] Tremlett, A. J.; Assadian, F.; Purdy, D. J.; Vaughan, N.; Moore, A. P.; Halley, M., Quasi-steady-state linearisation of the racing vehicle acceleration envelope: a limited slip differential example, Veh. Syst. Dyn., 52, 11, 1416-1442 (2014) · doi:10.1080/00423114.2014.943927
[3] Sharp, R. S.; Peng, H., Vehicle dynamics applications of optimal control theory, Veh. Syst. Dyn., 49, 7, 1073-1111 (2011) · doi:10.1080/00423114.2011.586707
[4] Liberzon, D., Calculus of Variations and Optimal Control Theory: A Concise Introduction (2011), Princeton: Princeton University Press, Princeton · Zbl 1239.49001 · doi:10.2307/j.ctvcm4g0s
[5] Betts, J. T., Practical Methods for Optimal Control and Estimation Using Nonlinear Programming (2010), Philadelphia: SIAM, Philadelphia · Zbl 1189.49001 · doi:10.1137/1.9780898718577
[6] Cossalter, V.; Da Lio, M.; Lot, R.; Fabbri, L., A general method for the evaluation of vehicle manoeuvrability with special emphasis on motorcycles, Veh. Syst. Dyn., 31, 2, 113-135 (1999) · doi:10.1076/vesd.31.2.113.2094
[7] Bertolazzi, E.; Biral, F.; Da Lio, M., Symbolic-numeric indirect method for solving optimal control problems for large multibody systems: the time-optimal racing vehicle example, Multibody Syst. Dyn., 13, 2, 233-252 (2005) · Zbl 1104.70003 · doi:10.1007/s11044-005-3987-4
[8] Tavernini, D.; Massaro, M.; Velenis, E.; Katzourakis, D. I.; Lot, R., Minimum time cornering: the effect of road surface and car transmission layout, Veh. Syst. Dyn., 51, 10, 1533-1547 (2013) · doi:10.1080/00423114.2013.813557
[9] Dal Bianco, N.; Lot, R.; Gadola, M., Minimum time optimal control simulation of a GP2 race car, Proc. Inst. Mech. Eng., Part D, J. Automob. Eng., 232, 9, 1180-1195 (2018) · doi:10.1177/0954407017728158
[10] Dal Bianco, N.; Bertolazzi, E.; Biral, F.; Massaro, M., Comparison of direct and indirect methods for minimum lap time optimal control problems, Veh. Syst. Dyn., 57, 5, 665-696 (2019) · doi:10.1080/00423114.2018.1480048
[11] Lot, R.; Dal Bianco, N., The significance of high-order dynamics in lap time simulations, The Dynamics of Vehicles on Roads and Tracks - Proceedings of the 24th Symposium of the International Association for Vehicle System Dynamics, IAVSD 2015, 553-562 (2016)
[12] Lot, R.; Da Lio, M., A symbolic approach for automatic generation of the equations of motion of multibody systems, Multibody Syst. Dyn., 12, 2, 147-172 (2004) · Zbl 1124.70002 · doi:10.1023/B:MUBO.0000044319.63215.22
[13] Casanova, D.; Sharp, R. S.; Symonds, P., Minimum time manoeuvring: the significance of yaw inertia, Veh. Syst. Dyn., 34, 2, 77-115 (2000) · doi:10.1076/0042-3114(200008)34:2;1-G;FT077
[14] Perantoni, G.; Limebeer, D. J.N., Optimal control for a formula one car with variable parameters, Veh. Syst. Dyn., 52, 5, 653-678 (2014) · doi:10.1080/00423114.2014.889315
[15] Van Koutrik, S.: Optimal control for race car minimum time maneuvering. Master thesis, Delft University of Technology (2015)
[16] Kelly, D.: Lap time simulation with transient vehicle and tyre dynamics. PhD thesis, Cranfield University (2008)
[17] Kelly, D. P.; Sharp, R. S., Time-optimal control of the race car: a numerical method to emulate the ideal driver, Veh. Syst. Dyn., 48, 12, 1461-1474 (2010) · doi:10.1080/00423110903514236
[18] Kelly, D. P.; Sharp, R. S., Time-optimal control of the race car: influence of a thermodynamic tyre model, Veh. Syst. Dyn., 50, 4, 641-662 (2012) · doi:10.1080/00423114.2011.622406
[19] Christ, F.; Wischnewski, A.; Heilmeier, A.; Lohmann, B., Time-optimal trajectory planning for a race car considering variable tyre-road friction coefficients, Veh. Syst. Dyn., 59, 1, 1-25 (2019)
[20] Andersson, J. A.E.; Gillis, J.; Horn, G.; Rawlings, J. B.; Diehl, M., Casadi: a software framework for nonlinear optimization and optimal control, Math. Program. Comput., 11, 1-36 (2019) · Zbl 1411.90004 · doi:10.1007/s12532-018-0139-4
[21] Wächter, A.; Biegler, L., On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., 106, 1, 25-57 (2006) · Zbl 1134.90542 · doi:10.1007/s10107-004-0559-y
[22] Novi, T.; Liniger, A.; Capitani, R.; Annicchiarico, C., Real-time control for at-limit handling driving on a predefined path, Veh. Syst. Dyn., 58, 7, 30 (2020) · doi:10.1080/00423114.2019.1605081
[23] Liniger, A.; Lygeros, J., Real-time control for autonomous racing based on viability theory, IEEE Trans. Control Syst. Technol., 27, 2, 464-478 (2019) · doi:10.1109/TCST.2017.2772903
[24] Rosolia, U.; Borrelli, F., Learning how to autonomously race a car: a predictive control approach, IEEE Trans. Control Syst. Technol., 28, 6, 2713-2719 (2019) · doi:10.1109/TCST.2019.2948135
[25] Houska, B.; Ferreau, H. J.; Diehl, M., Acado toolkit – an open-source framework for automatic control and dynamic optimization, Optim. Control Appl. Methods, 32, 3, 298-312 (2011) · Zbl 1218.49002 · doi:10.1002/oca.939
[26] Domahidi, A.; Zgraggen, A. U.; Zeilinger, M. N.; Morari, M.; Jones, C. N., Efficient interior point methods for multistage problems arising in receding horizon control, IEEE Conference on Decision and Control, 668-674 (2012)
[27] Verschueren, R.; De Bruyne, S.; Zanon, M.; Frasch, J. V.; Diehl, M., Towards time-optimal race car driving using nonlinear mpc in real-time, IEEE Conference on Decision and Control, 2505-2510 (2014) · doi:10.1109/CDC.2014.7039771
[28] Liniger, A.; Domahidi, A.; Morari, M., Optimization-based autonomous racing of 1:43 scale rc cars, Optim. Control Appl. Methods, 36, 5, 628 (2015) · Zbl 1330.93094 · doi:10.1002/oca.2123
[29] Theodosis, P. A.; Gerdes, J. C., Generating a racing line for an autonomous racecar using professional driving techniques, ASME 2011 Dynamic Systems and Control Conference (2011)
[30] Mühlmeier, M., Müller, N.: Optimization of the driving line on a race track (2002). SAE Technical Papers Series
[31] Lockel, S.; Peters, J.; van Vliet, P., A probabilistic framework for imitating human race driver behavior, IEEE Robot. Autom. Lett., 5, 2, 2086-2093 (2020) · doi:10.1109/LRA.2020.2970620
[32] Prokop, G., Modeling human vehicle driving by model predictive online optimization, Veh. Syst. Dyn., 35, 1, 19-53 (2001) · doi:10.1076/vesd.35.1.19.5614
[33] Timings, J. P.; Cole, D. J., Efficient minimum manoeuvre time optimisation of an oversteering vehicle at constant forward speed, Proceedings of the 2011 American Control Conference, 5267-5272 (2011) · doi:10.1109/ACC.2011.5991113
[34] Guiggiani, M., The Science of Vehicle Dynamics: Handling, Braking, and Ride of Road and Race Cars (2018), Berlin: Springer, Berlin · doi:10.1007/978-3-319-73220-6
[35] Pacejka, H., Tyre and Vehicle Dynamics. Tyre and Vehicle Dynamics (2002), Oxford: Butterworth-Heinemann, Oxford
[36] Oliphant, T. E., Python for scientific computing, Comput. Sci. Eng., 9, 3, 10-20 (2007) · doi:10.1109/MCSE.2007.58
[37] Gillis, J.; Diehl, M., Hierarchical seeding for efficient sparsity pattern recovery in automatic differentiation, CSC14: The Sixth SIAM Workshop on Combinatorial Scientific Computing (2014)
[38] Gebremedhin, A. H.; Manne, F.; Pothen, A., What color is your Jacobian? Graph coloring for computing derivatives, SIAM Rev., 47, 629-705 (2005) · Zbl 1076.05034 · doi:10.1137/S0036144504444711
[39] Griewank, A.; Walther, A., Evaluating Derivatives (2008), Philadelphia: SIAM, Philadelphia · Zbl 1159.65026 · doi:10.1137/1.9780898717761
[40] Piegl, L.; Tiller, W., The NURBS Book (1995), Berlin: Springer, Berlin · Zbl 0828.68118 · doi:10.1007/978-3-642-97385-7
[41] Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R., Google Earth engine: planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18-27 (2017) · doi:10.1016/j.rse.2017.06.031
[42] Douglas, D.; Peucker, T., Algorithms for the reduction of the number of points required to represent a digitized line or its caricature, Can. Cartogr., 10, 112-122 (1973) · doi:10.3138/FM57-6770-U75U-7727
[43] Abbott, E.; Powell, D., Land-vehicle navigation using GPS, Proc. IEEE, 87, 1, 145-162 (1999) · doi:10.1109/5.736347
[44] Nocedal, J.; Wright, S. J., Numerical Optimization. Operations Research and Financial Engineering (2006), Berlin: Springer, Berlin · Zbl 1104.65059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.