×

ACADO toolkit – an open-source framework for automatic control and dynamic optimization. (English) Zbl 1218.49002

Summary: The software environment and algorithm collection ACADO Toolkit is presented, which implements tools for automatic control and dynamic optimization. It provides a general framework for using a great variety of algorithms for direct optimal control, including model predictive control as well as state and parameter estimation. The ACADO Toolkit is implemented as a self-contained C++ code, while the object-oriented design allows for convenient coupling of existing optimization packages and for extending it with user-written optimization routines. We discuss details of the software design of the ACADO Toolkit 1.0 and describe its main software modules. Along with that we highlight a couple of algorithmic features, in particular its functionality to handle symbolic expressions. The user-friendly syntax of the ACADO Toolkit to set up optimization problems is illustrated with two tutorial examples: an optimal control and a parameter estimation problem.

MSC:

49-04 Software, source code, etc. for problems pertaining to calculus of variations and optimal control
49M30 Other numerical methods in calculus of variations (MSC2010)
49L20 Dynamic programming in optimal control and differential games
90C39 Dynamic programming

Software:

ADOL-C; ACADO; ADIFOR; dsoa
Full Text: DOI

References:

[1] Wächter A An interior point algorithm for large-scale nonlinear optimization with applications in process engineering 2002
[2] Wächter A Biegler L 2009 https://projects.coin-or.org/Ipopt
[3] 2009 http://tomdyn.com
[4] Fabien, dsoa: The implementation of a dynamic system optimization algorithm, Optimal Control Applications and Methods (2009) · Zbl 1200.90010 · doi:10.1002/oca.898
[5] Leineweber, An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part I: theoretical aspects, Computers and Chemical Engineering 27 pp 157– (2003) · doi:10.1016/S0098-1354(02)00158-8
[6] Bock, Proceedings 9th IFAC World Congress Budapest pp 243– (1984)
[7] Simon, Lecture Notes in Control and Information Sciences, in: Nonlinear Model Predictive Control pp 531– (2009) · Zbl 1196.93026 · doi:10.1007/978-3-642-01094-1_43
[8] Romanenko A Pedrosa N Leal J Santos L Seminario de Aplicaciones Industriales de Control Avanzado 2007 229 236
[9] Houska B Ferreau HJ 2009 www.acadotoolkit.org
[10] Bischof, ADIFOR Generating derivative codes from Fortran programs, Scientific Programming 1 pp 11– (1992) · doi:10.1155/1992/717832
[11] Griewank, Frontiers in Applied Mathematics, in: Evaluating Derivatives, Principles and Techniques of Algorithmic Differentiation (2000) · Zbl 0958.65028
[12] Griewank A Juedes D Mitev H Utke J Vogel O Walther A ADOL-C: A package for the automatic differentiation of algorithms written in C/C++ 1996 131 167
[13] Grant, Lecture Notes in Control and Information Sciences, in: Graph Implementations for Nonsmooth Convex Programs, Recent Advances in Learning and Control pp 95– (2008) · Zbl 1205.90223 · doi:10.1007/978-1-84800-155-8_7
[14] Grant M Boyd S 2009 http://stanford.edu/boyd/cvx
[15] Ascher, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations (1998) · Zbl 0908.65055 · doi:10.1137/1.9781611971392
[16] Bauer I Numerische Verfahren zur Lösung von Anfangswertaufgaben und zur Generierung von ersten und zweiten Ableitungen mit Anwendungen bei Optimierungsaufgaben in Chemie und Verfahrenstechnik 1999
[17] Petzold LR 1991 http:///www.engineering.ucsb.edi/cse/ddassl.tar.gz
[18] Bock, Bonner Mathematische Schriften, in: Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen (1987)
[19] 2009 https://computation.llnl.gov/casc/sundials
[20] 2009 http://www.acadotoolkit.org
[21] Leineweber, Fortschritt-Berichte VDI Reihe 3, Verfahrenstechnik, in: Efficient Reduced SQP Methods for the Optimization of Chemical Processes Described by Large Sparse DAE Models (1999)
[22] Biegler, An overview of simultaneous strategies for dynamic optimization, Chemical Engineering and Processing 46 pp 1043– (2007) · doi:10.1016/j.cep.2006.06.021
[23] Powell, Lecture Notes in Mathematics, in: Numerical Analysis, Dundee, 1977 (1978)
[24] Bock, Numerical Treatment of Inverse Problems in Differential and Integral Equations (1983)
[25] Han, A globally convergent method for nonlinear programming, Journal of Optimization Theory and Applications 22 pp 297– (1977) · Zbl 0336.90046 · doi:10.1007/BF00932858
[26] qpOASES 2007-2009 http://www.qpOASES.org
[27] Diehl, Real-Time Optimization for Large Scale Nonlinear Processes 920 (2002)
[28] Diehl, Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations, Journal of Process Control 12 pp 577– (2002) · doi:10.1016/S0959-1524(01)00023-3
[29] Diehl, Nominal stability of the real-time iteration scheme for nonlinear model predictive control, IEE Proceedings-Control Theory and Applications 152 (3) pp 296– (2005) · doi:10.1049/ip-cta:20040008
[30] Diehl, Real-Time and Online PDE-Constrained Optimization pp 23– (2007)
[31] Ferreau, 7th Conference-Computer Methods and Systems (CMS’09) (2009)
[32] Logist, Fast pareto set generation for nonlinear optimal control problems with multiple objectives, Structural and Multidisciplinary Optimization (2010) · Zbl 1274.90530 · doi:10.1007/s00158-010-0506-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.