×

Co-jumps and Markov counting systems in random environments. (English) Zbl 1483.60109

Sadovnichiy, Victor A. (ed.) et al., Contemporary approaches and methods in fundamental mathematics and mechanics. Cham: Springer. Underst. Complex Syst., 277-292 (2021).
Summary: Motivated by the analysis of multi-strain infectious disease data, we provide closed-form transition rates for continuous-time Markov chains that arise from subjecting Markov counting systems to correlated environmental noises. Noise correlation induces co-jumps or counts that occur simultaneously in several counting processes. Such co-jumps are necessary and sufficient for infinitesimal correlation between counting processes of the system. We analyzed such infinitesimal correlation for a specific infectious disease model by randomizing time of Kolmogorov’s Backward system of differential equations based on appropriate stochastic integrals.
For the entire collection see [Zbl 1470.53006].

MSC:

60J27 Continuous-time Markov processes on discrete state spaces
60K37 Processes in random environments
60H05 Stochastic integrals

References:

[1] Stocks, T., Britton, T., Höhle, M.: Model selection and parameter estimation for dynamic epidemic models via iterated filtering: application to rotavirus in Germany. Biostatistics (2018)
[2] Snyder, D., Miller, M.: Random Point Processes in Time and Space. Springer, Berlin (1991) · Zbl 0744.60050
[3] Ross, S.: Stochastic Processes, 2nd edn. Wiley, New York (1996) · Zbl 0888.60002
[4] Renshaw, E.: Modelling Biological Populations in Space and Time. Cambridge University Press, Cambridge (1991) · Zbl 0754.92018 · doi:10.1017/CBO9780511624094
[5] Reich, N.G., Shrestha, S., King, A.A., Rohani, P., Lessler, J., Kalayanarooj, S., Yoon, I.-K., Gibbons, R.V., Burke, D.S., Cummings, D.A.T.: Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity. J. R. Soc. Interface 10(86), (2013)
[6] Nisbet, R., Gurney, W.: Modelling Fluctuating Populations. Wiley Interscience publication, Wiley, New York (1982) · Zbl 0593.92013
[7] McCullagh, P., Nelder, J.A.: Generalized Linear Models, 2nd edn. Chapman and Hall, London (1989) · Zbl 0588.62104 · doi:10.1007/978-1-4899-3242-6
[8] Matis, J.H., Kiffe, T.R.: Stochastic Population Models. A Compartmental Perpective. Springer, Berlin (2000) · Zbl 0943.92029
[9] Magpantay, F.M.G., Domenech de Cellès, M., Rohani, P., King, A.A.: Pertussis immunity and epidemiology: mode and duration of vaccine-induced immunity. Parasitology 143, 835-849 (2016) · doi:10.1017/S0031182015000979
[10] Jacquez, J.A.: Compartmental Analysis in Biology and Medicine, 3rd edn. BioMedware, Ann Arbor (1996) · Zbl 0703.92001
[11] Dureau, J., Kalogeropoulos, K., Baguelin, M.: Capturing the time-varying drivers of an epidemic using stochastic dynamical systems. Biostatistics 14(3), 541-555 (2013) · doi:10.1093/biostatistics/kxs052
[12] Cox, D., Isham, V.: Point Processes. Chapman & Hall, New York (1980) · Zbl 0441.60053
[13] Cauchemez, S., Ferguson, N.M.: Likelihood-based estimation of continuous-time epidemic models from time-series data: application to measles transmission in London. J. R. Soc. Interface 5(25), 885-897 (2008) · doi:10.1098/rsif.2007.1292
[14] Buckee, C.O., Recker, M., Watkins, E.R., Gupta, S.: Role of stochastic processes in maintaining discrete strain structure in antigenically diverse pathogen populations. Proc. Nat. Acad. Sci. 108(37), 15504-15509 (2011) · doi:10.1073/pnas.1102445108
[15] Bretó, C., He, D., Ionides, E., King, A.: Time series analysis via mechanistic models. Ann. Appl. Stat. 3, 319-348 (2009) · Zbl 1160.62080 · doi:10.1214/08-AOAS201
[16] Bretó, C.: Time changes that result in multiple points in continuous-time Markov counting processes. Stat. Probab. Lett. 82, 2229-2234 (2012b) · Zbl 1471.60116 · doi:10.1016/j.spl.2012.08.006
[17] Bretó, C.: On infinitesimal dispersion of multivariate Markov counting systems. Stat. Probab. Lett. 82, 720-725 (2012a) · Zbl 1244.60075 · doi:10.1016/j.spl.2011.12.019
[18] Brémaud, P.: Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. Springer, New York (1999) · Zbl 0949.60009 · doi:10.1007/978-1-4757-3124-8
[19] Bochner, S.: Diffusion equation and stochastic processes. Proc. Nat. Acad. Sci. U. S. A. 35, 368-370 (1949) · Zbl 0033.06803 · doi:10.1073/pnas.35.7.368
[20] Bharucha-Reid, A.T.: Elements of the Theory of Markov Processes and their Applications. McGraw-Hill, New York (1960) · Zbl 0095.32803
[21] Bhadra, A., Ionides, E.L., Laneri, K., Pascual, M., Bouma, M., Dhiman, R.C.: Malaria in Northwest India: Data analysis via partially observed stochastic differential equation models driven by Lévy noise. J. Amer. Stat. Ass. 106, 440-451 (2011) · Zbl 1232.62143 · doi:10.1198/jasa.2011.ap10323
[22] Bartlett, M.S.: Deterministic and stochastic models for recurrent epidemics. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, pp. 81-109. University California Press, Berkeley (1956) · Zbl 0070.15004
[23] Barndorff-Nielsen, O.E., Shiryaev, A.: Change of time and change of measure. World Scientific Publishing, Singapore (2010) · Zbl 1234.60003
[24] Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge (2004) · Zbl 1073.60002 · doi:10.1017/CBO9780511755323
[25] Aguiar, M., Stollenwerk, N., Kooi, B.W.: The Stochastic Multi-strain Dengue Model: Analysis of the Dynamics. In: Simos, T. E., Psihoyios, G., Tsitouras, C., Anastassi, Z. (Eds.), American Institute of Physics Conference Series. Volume 1389 of American Institute of Physics Conference Series, pp. 1224-1227 (2011)
[26] Anderson, R.M., May, R.M.: Infectious Diseases of Humans. Oxford University Press, Oxford (1991)
[27] Braumann, C.A.: Environmental Versus Demographic Stochasticity in Population growth, pp. 37-52. Springer, Berlin (2010)
[28] Bretó, C.: Modeling and inference for infectious disease dynamics: a likelihood-based approach. Stat. Sci. 33(1), 57-69 (2018) · Zbl 1407.62397 · doi:10.1214/17-STS636
[29] Bretó, C.: Trajectory composition of poisson time changes and markov counting systems. Stat. Probab. Lett. 88, 91-98 (2014) · Zbl 1296.60202 · doi:10.1016/j.spl.2014.01.032
[30] Bretó, C., Ionides, E.: Compound Markov counting processes and their applications to modeling infinitesimally over-dispersed systems. Stoch. Proc. Appl. 121, 2571-2591 (2011) · Zbl 1279.60095 · doi:10.1016/j.spa.2011.07.005
[31] Engen, S., Bakke, O., Islam, A.: Demographic and environmental stochasticity: concepts and definitions. Biometrics 54, 840-846 (1998) · Zbl 1058.91572 · doi:10.2307/2533838
[32] Daley, D., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Volume I: Elementary Theory and Methods. Springer, Berlin (2003) · Zbl 1026.60061
[33] He, D., Ionides, E., King, A.: Plug-and-play inference for disease dynamics: measles in large and small populations as a case study. J. R. Soc. Interface 7, 271-283 (2010) · doi:10.1098/rsif.2009.0151
[34] Fenton, A., Pedersen, A.: Community epidemiology framework for classifying disease threats. Emer. Interface Dis. 11, 1815-1821 (2005) · doi:10.3201/eid1112.050306
[35] Hougaard, P., Lee, M.-L.T., Whitmore, G.A.: Analysis of overdispersed count data by mixtures of poisson variables and poisson processes. Biometrics 53(4), 1225-1238 (1997) · Zbl 0911.62101 · doi:10.2307/2533492
[36] Hu, G., Wang, K.: Stability in distribution of competitive Lotka-Volterra system with Markovian switching. Appl. Math. Modell. 35(7), 3189-3200 (2011) · Zbl 1228.34088 · doi:10.1016/j.apm.2010.12.025
[37] Ionides, E.L., Bretó, C., King, A.A.: Inference for nonlinear dynamical systems. Proc. Nat. Acad. Sci. USA 103, 18438-18443 (2006) · doi:10.1073/pnas.0603181103
[38] Kamo, M., Sasaki, A.: The effect of cross-immunity and seasonal forcing in a multi-strain epidemic model. Phys. D 165, 228-241 (2002) · Zbl 0993.92030 · doi:10.1016/S0167-2789(02)00389-5
[39] Kermack, W.O., McKendrick, A.G: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lon., Ser. A 115, 700-721 (1927) · JFM 53.0517.01
[40] King, A., Ionides, E., Pacual, M., Bouna, M.: Inapparent infections and cholera dynamics. Nature 454, 877-880 (2008) · doi:10.1038/nature07084
[41] Kozubowski, T.J., Podgórski, K.: Distributional properties of the negative binomial Lévy process. Probab. Math. Stat. 29, 43-71 (2009) · Zbl 1170.60021
[42] Lee, M.-L.T., Whitmore, G.A.: Stochastic processes directed by randomized time. J. Appl. Probab. 30(2), 302-314 (1993) · Zbl 0777.60030 · doi:10.2307/3214840
[43] Laneri, K., Bhadra, A., Ionides, E., Bouma, M., Dhiman, R., Yadav, R.S., Pascual, M.: Forcing versus feedback: epidemic malaria and monsoon rains in Northwest India. PLoS Comput. Biol. 6 (2010)
[44] Marion, G., Renshaw, E.: Stochastic modelling of environmental variation for biological populations. Theor. Popul. Biol. 57, 197-217 (2000) · Zbl 0984.92039 · doi:10.1006/tpbi.2000.1450
[45] O’Dea Eamon, B., Park, A.W., Dark, J.: Estimating the distance to an epidemic threshold. J. R. Soc. Interface 15 (2018)
[46] Shrestha, S., King, A., Rohani, P.: Statistical inference for multi-pathogen systems. PLoS Comput. Biol. 7(8), e1002135 (2011) · doi:10.1371/journal.pcbi.1002135
[47] Varughese, M., Fatti, L.: Incorporating environmental stochasticity within a biological population model. Theor. Popul. Biol. 74, 115-129 (2008) · Zbl 1210.92060 · doi:10.1016/j.tpb.2008.05.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.