×

How many simplices are needed to triangulate a Grassmannian? (English) Zbl 1483.57030

The aim of this article is clearly expressed in the title. The authors prove lower bounds for the number of vertices or top-dimensional simplices (facets) for a triangulation of the Grassmannian \(G_k(\mathbb{R}^n)\). The estimates are based on the knowledge of the maximal height of cup-powers in the cohomology. This method was developed by the authors [Discrete Comput. Geom. 63, No. 1, 31–48 (2020; Zbl 1431.55003)]. For the projective space \(\mathbb{R}P^{n-1}\) (the case \(k=1\)) a lower bound for the number of vertices is \(\binom{n+1}{2}\). For \(G_2(\mathbb{R}^n)\) the authors obtain \((n-2)^2+ 2^s(2n-2^s- 1)\) if \(2^s<n\le 2^{s+1}\). Similar bounds are given for \(k=3\) and \(k=4\), for \(G_3(\mathbb{R}^8)\) the bound is \(117\).
Another tool is the Lower Bound Theorem (LBT) together with its generalizations. This implies in Thm. 4.7 that the number of facets in a triangulated \(G_k(\mathbb{R}^{n+k})\) is at least \(2^{nk}+k(n^3+ n^2)/2+ k(k+2)(k-1)n/2\).
Surprisingly, this bound is sharp for \(k=1\), \(n=2\) since the smallest triangulation of \(\mathbb{R}P^2\) has \(10\) triangles. Unfortunately, for \(k\ge 2\) explicit examples do not seem to be known. So the question remains open how sharp these bounds are.
The authors remark that their method can be used also for other spaces, like Lie groups, flag manifolds, Stiefel manifolds etc. For Lie groups see the recent paper by H. Duan et al. [Topology Appl. 293, Article ID 107559, 13 p. (2021; Zbl 1468.57022)].

MSC:

57Q15 Triangulating manifolds
52B05 Combinatorial properties of polytopes and polyhedra (number of faces, shortest paths, etc.)
52B70 Polyhedral manifolds
14M15 Grassmannians, Schubert varieties, flag manifolds

References:

[1] K. Adiprasito, Combinatorial Lefschetz theorems beyond positivity, arXiv:math.CO/ 1812.10454v4 (2018), 76 pp.
[2] K. Adiprasito, S. Awakumov and R. Karasev, A subexponential size \(\mathbb{RP}^n\), arXiv: math.CO/2009.02703 (2020), 15 pp.
[3] D. Barnette, The minimum number of vertices of a simple polytope, Israel J. Math. 10 (1971), 121-125. · Zbl 0221.52004 · doi:10.1007/BF02771522
[4] D. Barnette, A proof of the lower bound conjecture for convex polytopes, Pacific J. Math. 46 (1973), 349-354. · Zbl 0264.52006 · doi:10.2140/pjm.1973.46.349
[5] D. Barnette, Graph theorems for manifolds, Israel J. Math. 16 (1973), 62-72. · Zbl 0273.52004 · doi:10.1007/BF02761971
[6] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogenes de groupes de Lie compacts, Ann. of Math. 57 (1953), 115-207. · Zbl 0052.40001 · doi:10.2307/1969728
[7] U. Brehm and W. Kühnel, \(15\)-Vertex triangulations of \(8\)-manifolds, Math. Ann. 294 (1992), 167-193. · Zbl 0734.57017
[8] L. Casian and Y. Kodama, On the cohomology of real Grassmann manifolds, arXiv:math. AG/1309.5520 (2013), 13 pp.
[9] A.A. Gaifullin, Computation of characteristic classes of a manifold from its triangulation, Uspekhi Mat. Nauk 60 (2005), no. 4 (364), 37-66 (Russian); English transl.: Russian Math. Surveys 60 (2005), no. 4, 615-644. · Zbl 1139.57026
[10] A.A. Gaifullin, Configuration spaces, bistellar moves, and combinatorial formulas for the first Pontryagin class., Proc. Steklov Inst. Math. 268 (2010), 70-86. · Zbl 1227.57033 · doi:10.1134/S0081543810010074
[11] I.M. Gel’fand and R.D. MacPherson, A combinatorial formula for the Pontrjagin classes, Bull. Amer. Math. Soc. (N.S.) 26 (1992), 304-309. · Zbl 0756.57015
[12] D. Gorodkov, A \(15\)-vertex triangulation of the quaternionic projective plane, Discrete Comput. Geom. 62 (2019), 348-373. · Zbl 1425.57016 · doi:10.1007/s00454-018-00055-w
[13] D. Govc, W. Marzantowicz and P. Pavešić, Estimates of covering type and the number of vertices of minimal triangulations, Discrete Comput. Geom. 63 (2019), 31-48. · Zbl 1431.55003
[14] M. Gromov, Partial Differential Relations, Springer, Berlin, Heidelberg, New York, 1986. · Zbl 0651.53001
[15] A. Hatcher, Algebraic topology, Cambridge University Press, 2002. · Zbl 1044.55001
[16] C. He, Torsions of integral homology and cohomology of real Grassmannians, arXiv:math. AT/1709.05623 (2017), 6 pp.
[17] G. Kalai, Rigidity and the lower bound theorem \(1\), Invent. Math. 88 (1987), 125-151. · Zbl 0624.52004
[18] M. Karoubi and C. Weibel On the covering type of a space, L’Enseignement Math. 62 (2016), 457-474. · Zbl 1378.55002 · doi:10.4171/LEM/62-3/4-4
[19] S. Klee and I. Novik, Face enumeration on simplicial complexes, Recent Trends in Combinatorics, Springer, Cham, 2016, pp.,653-686. · Zbl 1354.05152
[20] W. Kühnel, Higher-dimensional analogues of Caászár’s torus, Result. Math. 9 (1986), 95-106. · Zbl 0552.52003
[21] F.H. Lutz, Triangulated manifolds with few vertices: combinatorial manifolds.v1 (2005), 37 pp.
[22] P. McMullen and D. Walkup, A generalized lower-bound conjecture for simplicial polytopes, Mathematika 18 (1971), 264-273. · Zbl 0233.52003 · doi:10.1112/S0025579300005520
[23] L. Milin, A combinatorial computation of the first Pontryagin class of the complex projective plane, Geom. Dedicata 49 (1994), 253-291. · Zbl 0956.57016 · doi:10.1007/BF01264030
[24] S. Murai and E. Nevo, On the generalized lower bound conjecture for polytopes and spheres, Acta Math. 210 (2013), 185-202. · Zbl 1279.52014 · doi:10.1007/s11511-013-0093-y
[25] I. Novik, Upper Bound Theorems for homology manifolds, Israel J. Math. 108 (1998), 45-82. · Zbl 0922.52004 · doi:10.1007/BF02783042
[26] I. Novik and E. Swartz, Applications of Klee’s Dehn-Sommerville relations, Discrete Comput. Geom. 42 (2009), 261-276. · Zbl 1171.52003 · doi:10.1007/s00454-009-9187-x
[27] I. Novik and E. Swartz, Gorenstein rings through face rings of manifolds, Compos. Math. 145 (2009), 993-1000. · Zbl 1217.13009 · doi:10.1112/S0010437X09004138
[28] I. Novik and E. Swartz, Socles of Buchsbaum modules, complexes and posets, Adv. Math. 222 (2009), 2059-2084. · Zbl 1182.52010 · doi:10.1016/j.aim.2009.07.001
[29] P. Schenzel, On the number of faces of simplicial complexes and the purity of Frobenius, Math. Z. 178 (1981), 125-142. · Zbl 0472.13012 · doi:10.1007/BF01218376
[30] R. Stanley, The number of faces of a simplicial convex polytope, Adv. Math. 35 (1980), 236-238. · Zbl 0427.52006 · doi:10.1016/0001-8708(80)90050-X
[31] R. Stong, Cup products in Grassmannians, Top. Appl. 13 (1982), 103-113. · Zbl 0469.55005 · doi:10.1016/0166-8641(82)90012-8
[32] E. Swartz, Thirty-five years and counting, arXiv:math.CO/1411.0987 (2014), 29 pp.
[33] L. Venturello and H. Zheng, A new family of triangulation of \(\mathbb{R}P^d\), arXiv:math.CO/ 1910.07433 (2019), 13 pp.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.