×

Higherdimensional analogues of Császár’s torus. (English) Zbl 0552.52003

For every even dimension n we give an example of a \((2n+3)\)-vertex 2- neighborly combinatorial manifold which is a triangulation of the sphere product \(S^{n-1}\times S^ 1.\) It can be realized in the n-skeleton of the cyclic polytope \(C(2n+3,n+2)\) and consequently it is polyhedrally realizable as a hypersurface in euclidean \((n+1)-\)space. Because the triangulation contains all possible edges this polyhedron has no diagonals. In the case \(n=2\) this is known as Császár’s torus. The same construction works for odd n leading to a \((2n+3)-\)vertex 2- neighborly triangulation of the (nonorientable) ”generalized Klein bottle” which cannot be embedded into \((n+1)-\)space. However, it can be realized in the n-skeleton of the cyclic polytope \(C(2n+3,n+3)\) and consequently in euclidean \((n+2)-\)space. In the case \(n=3\) this triangulation has been found originally by A. Altshuler and L. Steinberg who called it \(N^ 9_{51}\) [Discrete Math. 8, 113-137 (1974; Zbl 0292.57011)].

MSC:

52Bxx Polytopes and polyhedra
57Q15 Triangulating manifolds
51M20 Polyhedra and polytopes; regular figures, division of spaces

Citations:

Zbl 0292.57011
Full Text: DOI

References:

[1] A. Altshuler, Polyhedral realizations in R3 of triangulations of the torus and 2-manifolds in cyclic 4-polytopes, Discr. Math. 1, 211–238 (1971) · Zbl 0235.57001 · doi:10.1016/0012-365X(71)90011-2
[2] A. Altshuler, Combinatorial 3-manifolds with few vertices, J. Combin. Th. (A). 16, 165–173 (1974) · Zbl 0272.57010 · doi:10.1016/0097-3165(74)90042-9
[3] A. Altshuler, Neighborly 4-polytopes and neighborly combinatorial 3-manifolds with ten vertices, Can. J. Math. 29 400–420 (1977) · Zbl 0331.57006 · doi:10.4153/CJM-1977-043-5
[4] A. Altshuler, L. STEINBERG, Neighborly combinatorial 3-manifolds with 9 vertices, Discr. Math. 8, 113–137 (1974) · Zbl 0292.57011 · doi:10.1016/0012-365X(74)90059-4
[5] T. F. Banchoff, Tightly embedded 2-dimensional polyhedral manifolds, Amer. J. Math. 87, 462–472 (1965) · Zbl 0136.21005 · doi:10.2307/2373013
[6] A. Csaszar, A polyhedron without diagonals, Acta Sci. Math. (Szeged). 13, 140–142 (1949) · Zbl 0038.30703
[7] G. Ewald, Über stellare Äquivalenz konvexer Polytope, Resultate d. Math. 1 54–60 (1978) · Zbl 0392.52009 · doi:10.1007/BF03322927
[8] B. Grünbaum, Convex Polytopes, Wiley-Interscience, New York 1967
[9] W. Kühnel, G. Lassmann, The unique 3-neighborly 4-manifold with few vertices, J. Combin. Th. (A). 35, 173–184 (1983) · Zbl 0526.52008 · doi:10.1016/0097-3165(83)90005-5
[10] W. Kühnel, G. Lassmann, The rhombidodecahedral tessellation of 3-space and a particular 15-certex triangulation of the 3-dimensional torus, manuscripta math. 49, 61–77 (1984) · Zbl 0556.57016 · doi:10.1007/BF01174871
[11] A. MÖBIUS, Gesammelte Werke, Vol. 2, Leipzig 1886
[12] C. P. Rourke, B. J. Sanderson, Introduction to piecewise-linear topology, Springer, Berlin-Heidelberg-New York 1972 (Ergebnisse der Mathematik und ihrer Grenzgebiete 69) · Zbl 0254.57010
[13] G. C. Shephard, Subpolytopes of stack polytopes, Israel J. Math. 19, 292–296 (1974) · Zbl 0305.52010 · doi:10.1007/BF02757728
[14] N. E. Steenrod, The classification of sphere bundles, Ann. of Math. 45, 294–311 (1944) · Zbl 0060.41412 · doi:10.2307/1969267
[15] D. W. Walkup, The lower bound conjecture for 3- and 4-manifolds, Acta Math. 125, 75–107 (1970) · Zbl 0204.56301 · doi:10.1007/BF02392331
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.