×

Trajectory tracking of a class of uncertain systems applied to vehicle platooning and antenna scanning systems. (English) Zbl 1482.93147

Summary: The tracking problem is considered for a recurring class of systems, such as the Cartesian robots with real actuators, some transportation systems, and scanning devices used for medical and engineering applications. Some theorems are proved to design a PD type controller, with a possible compensation signal, in order to track sufficiently smooth trajectories with a prescribed maximum error. The developed design methodology is illustrated through two engineering examples. The first example concerns the safety distance control of an electric vehicles fleet. The second example deals with the identification of an antenna scanning system and the prototype design of a new controller that provides better performance than the current one.

MSC:

93B35 Sensitivity (robustness)
93C41 Control/observation systems with incomplete information
93C10 Nonlinear systems in control theory
93C28 Positive control/observation systems
Full Text: DOI

References:

[1] Adams, R. J.; Buffington, J. M.; Sparks, A. G.; Banda, S. S., Robust multivariable flight control (1994), London: Springer-Verlag, London
[2] Ambrosino, G.; Celentano, G.; Garofalo, F., Tracking control of high-performance robots via stabilizing controllers for uncertain systems, Journal of Optimization Theory and Applications, 50, 2, 239-255 (1986) · Zbl 0577.93035 · doi:10.1007/BF00939271
[3] Anupoju, C. M.; Su, C.-Y.; Oya, M., Adaptive motion tracking control of uncertain nonholonomic mechanical systems including actuator dynamics, IEE Proceedings - Control Theory and Applications, 152, 5, 575-580 (2005) · doi:10.1049/ip-cta:20041303
[4] Basin, M.; Rodriguez-Ramirez, P.; Guerra-Avellaneda, F., Continuous fixed-time controller design for mechatronic systems with incomplete measurements, IEEE/ASME Transactions on Mechatronics, 99 (2017)
[5] Basin, M., Serna, M., & Lopez-Hernandes, P. I. (2013). Central energy-to-peak filter design for uncertain linear systems. Proceedings of 9th Asian control conference, ASCC, 23(1), 57-67. Istanbul, Turkey.
[6] Bazaei, A.; Maroufi, M.; Fowler, A. G.; Reza Moheimani, S. O., Internal model control for spiral trajectory tracking with MEMS AFM scanners, IEEE Transactions on Control Systems Technology, 24, 5, 1717-1728 (2016) · doi:10.1109/TCST.2015.2508979
[7] Brahmi, B.; Saad, M.; Rahman, M. H.; Ochoa-Luna, C., Cartesian trajectory tracking of a 7-dof exoskeleton robot based on human inverse kinematics, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 99, 1-12 (2017)
[8] Celentano, L., Tracking controllers design of references with bounded derivative, Applied Mathematical Sciences, 6, 95, 4709-4728 (2012) · Zbl 1262.93007
[9] Celentano, L., Robust tracking method for uncertain MIMO systems of realistic trajectories, Journal of the Franklin Institute, 350, 3, 437-451 (2013) · Zbl 1268.93047 · doi:10.1016/j.jfranklin.2012.12.002
[10] Celentano, L., Design of a pseudo-PD or PI robust controller to track C2 trajectories for a class of uncertain nonlinear MIMO system, Journal of the Franklin Institute, 354, 12, 5026-5055 (2017) · Zbl 1367.93455 · doi:10.1016/j.jfranklin.2017.05.019
[11] Celentano, L., Pseudo-PID robust tracking design method for a significant class of uncertain MIMO systems, IFAC-PapersOnLine, 50, 1, 1545-1552 (2017) · doi:10.1016/j.ifacol.2017.08.307
[12] Celentano, L.; Basin, M., An approach to design robust tracking controllers for nonlinear uncertain systems, IEEE Transactions on Systems, Man and Cybernetics: Systems (2018)
[13] Chung, W.; Fu, L.-C.; Hsu, S.-H.; Siciliano, B.; Khatib, O., Motion control, Springer handbook of robotics (2008), Berlin, Germany: Springer, Berlin, Germany
[14] D’Agostino, F., Fast and accurate antenna pattern evaluation from Near-Field data acquired via planar spiral scanning, IEEE Transactions on Antennas and Propagation, 64, 8, 3450-3458 (2016) · Zbl 1395.78085 · doi:10.1109/TAP.2016.2576483
[15] Dorato, P. (Ed.), Robust control (1987), New York, NY: IEEE Press, New York, NY
[16] Gregson, S.; McCormick, J.; Parini, C., Principles of planar near-field antenna measurements (2008), London, UK: Institute of Engineering & Technology, London, UK
[17] Hara, S.; Iwasaki, T.; Shiokata, D., Robust PID control using generalized KYP synthesis: Direct open-loop shaping in multiple frequency ranges, IEEE Control Systems, 26, 1, 80-91 (2006) · Zbl 1395.93212 · doi:10.1109/MCS.2006.1580156
[18] Harfouch, Y. A.; Yuan, S.; Baldi, S., An adaptive switched control approach to heterogeneous platooning with inter-vehicle communication losses, IEEE Transactions on Control of Network Systems, 5, 3, 1434-1444 (2018) · Zbl 1515.93146
[19] Jang, J. T., Gong, H. C., & Lyou, J. (2015). Computed torque control of an aerospace craft using nonlinear inverse model and rotation matrix. Proceedings of the 15th international conference on control, automation and systems (pp. 1743-1746), Busan, South Korea.
[20] Kumar, V.; Rana, K. P. S.; Mishra, P., Robust speed control of hybrid electric vehicle using fractional order fuzzy PD and PI controllers in cascade control loop, Journal of the Franklin Institute, 353, 8, 1713-1741 (2016) · Zbl 1347.93105 · doi:10.1016/j.jfranklin.2016.02.018
[21] Li, S. P., Adaptive control with optimal tracking performance, International Journal of Systems Science, 49, 3, 496-510 (2018) · Zbl 1385.93039
[22] Li, B.; Du, H.; Li, W., Trajectory control for autonomous electric vehicles with in-wheel motors based on a dynamics model approach, IET Intelligent Transportation Systems, 10, 5, 318-330 (2016) · doi:10.1049/iet-its.2015.0159
[23] Parini, C.; Gregson, S.; McCormick, J.; Van Rensburg, D. J., Theory and practice of modern antenna range measurements (2014), London, England (UK): Institution of Engineering and Technology, London, England (UK)
[24] Paul, S.; Yu, W.; Li, X., Bidirectional active control of structures with type-2 fuzzy PD and PID, International Journal of Systems Science, 49, 4, 766-782 (2018) · Zbl 1385.93051
[25] Piltan, F.; Yarmahmoudi, M. H.; Shamsodini, M.; Mazlomian, E.; Hosainpour, A., PUMA-560 robot manipulator position computed torque control methods using MATLAB/SIMULINK and their integration into graduate nonlinear control and Matlab courses, International Journal of Robotics and Automation, 3, 3, 167-191 (2012)
[26] Quan, Q.; Lin, H.; Cai, K.-Y., Output feedback tracking control by additive state decomposition for a class of uncertain systems, International Journal of Systems Science, 45, 9, 1799-1813 (2014) · Zbl 1290.93078
[27] Rastogi, E., & Prasad, L. B. (2015). Comparative performance analysis of PD/PID computed torque control, filtered error approximation based control and NN control for a robot manipulator. Proceedings of the 2015 IEEE UP section conference on electrical computer and electronics (pp. 1-6), Allahabad, India.
[28] Siciliano, B.; Khatib, O., Springer handbook of robotics (2016), Switzerland: Springer, Switzerland · Zbl 1357.93001
[29] Spong, M. W.; Vidyasagar, M., Robot dynamics and control (2009), Hoboken, NJ: Wiley, Hoboken, NJ
[30] Sun, Z.; Xia, Y.; Dai, L.; Liu, K.; Ma, D., Disturbance rejection MPC for tracking of wheeled mobile robot, IEEE/ASME Transactions on Mechatronics, 22, 6, 2576-2587 (2017) · doi:10.1109/TMECH.2017.2758603
[31] Tuma, T.; Sebastian, A.; Lygeros, J.; Pantazi, A., The four pillars of nanopositioning for scanning probe microscopy: the position sensor, the scanning device, the feedback controller, and the reference trajectory, IEEE Control Systems, 33, 6, 68-85 (2013) · Zbl 1395.93434 · doi:10.1109/MCS.2013.2279473
[32] Xiao, B., Yang, J., Fu, Z., Wu, C., & Huo, X. (2016). A proportional-derivative-type attitude tracking control of satellite. Proceedings of the 35th Chinese control conference (pp. 10858-10863), Chengdu, China.
[33] Yang, G.; Yao, J.; Le, G.; Ma, D., Asymptotic output tracking control of electro-hydraulic systems with unmatched disturbances, IET Control Theory & Applications, 10, 18, 2543-2551 (2016) · doi:10.1049/iet-cta.2016.0702
[34] Zuo, S.; Hughes, M.; Yang, G.-Z., Flexible robotic scanning device for intraoperative endomicroscopy in MIS, IEEE/ASME Transactions on Mechatronics, 22, 4, 1728-1735 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.