×

Output feedback tracking control by additive state decomposition for a class of uncertain systems. (English) Zbl 1290.93078

Summary: Besides parametric uncertainties and disturbances, unmodelled dynamics and time delay at the input are often present in practical systems, and cannot always be ignored. This paper aims to solve the problem of output feedback tracking control for a class of nonlinear uncertain systems subject to unmodelled high-frequency gains and time delay in the input. By additive state decomposition, the uncertain system is transformed to an uncertainty-free system, in which the uncertainties, disturbances and effects of unmodelled dynamics along with time delay are lumped into a new disturbance at the output. Subsequently, additive state decomposition is used to decompose the transformed system to simplify the tracking controller design. The proposed control scheme is applied to three benchmark examples to demonstrate its effectiveness.

MSC:

93B52 Feedback control
93C41 Control/observation systems with incomplete information
93C10 Nonlinear systems in control theory
93B17 Transformations
93C73 Perturbations in control/observation systems
Full Text: DOI

References:

[1] DOI: 10.1016/j.automatica.2009.04.027 · Zbl 1175.93081 · doi:10.1016/j.automatica.2009.04.027
[2] DOI: 10.1109/TAC.2007.914282 · Zbl 1367.93301 · doi:10.1109/TAC.2007.914282
[3] DOI: 10.1109/TAC.2009.2037384 · Zbl 1368.93289 · doi:10.1109/TAC.2009.2037384
[4] DOI: 10.1109/TCST.2006.876628 · doi:10.1109/TCST.2006.876628
[5] DOI: 10.1080/00207720110102557 · Zbl 1012.93026 · doi:10.1080/00207720110102557
[6] DOI: 10.1109/TCST.2002.806455 · doi:10.1109/TCST.2002.806455
[7] Dennis J.E., Numerical Methods for Unconstrained Optimization and Nonlinear Equations (1983) · Zbl 0579.65058
[8] DOI: 10.1002/acs.912 · Zbl 1132.93023 · doi:10.1002/acs.912
[9] DOI: 10.1016/0005-1098(76)90006-6 · Zbl 0344.93028 · doi:10.1016/0005-1098(76)90006-6
[10] DOI: 10.1080/0020717031000089570 · Zbl 1071.93012 · doi:10.1080/0020717031000089570
[11] Han J., Journal of Systems Science and Mathematical Sciences 14 pp 177– (1994)
[12] DOI: 10.1007/978-1-4471-0011-9 · doi:10.1007/978-1-4471-0011-9
[13] Johnson E.N., NASA Technical Memorandum (1994)
[14] Khalil H.K., Nonlinear Systems (2002) · Zbl 1003.34002
[15] DOI: 10.1007/978-0-85729-664-1 · Zbl 1234.93002 · doi:10.1007/978-0-85729-664-1
[16] DOI: 10.1016/S0005-1098(97)00209-4 · Zbl 0915.93013 · doi:10.1016/S0005-1098(97)00209-4
[17] DOI: 10.1109/TAC.2009.2013042 · Zbl 1367.93125 · doi:10.1109/TAC.2009.2013042
[18] Quan Q., Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference pp 817– (2009)
[19] DOI: 10.1109/TAC.2010.2089379 · Zbl 1368.93434 · doi:10.1109/TAC.2010.2089379
[20] DOI: 10.1109/TAC.1985.1104070 · Zbl 0571.93042 · doi:10.1109/TAC.1985.1104070
[21] DOI: 10.1080/00207720600566446 · Zbl 1111.93037 · doi:10.1080/00207720600566446
[22] Smith R.E., NASA Technical Memorandum (1986)
[23] DOI: 10.1049/ip-cta:19960808 · Zbl 0876.93034 · doi:10.1049/ip-cta:19960808
[24] Xargay E., Proceedings of the 17th Mediterranean Conference on Control & Automation pp 31– (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.