×

A study of coupled systems of mixed order fractional differential equations and inclusions with coupled integral fractional boundary conditions. (English) Zbl 1482.34031

Summary: In this work we investigate existence and uniqueness of solutions for new coupled systems of mixed order fractional differential equations and inclusions supplemented with coupled nonlocal fractional boundary conditions. We apply the Leray-Schauder alternative and the Banach contraction mapping principle to obtain the existence and uniqueness results, while in the multi-valued case we use the nonlinear alternative for Kakutani maps and Covitz and Nadler’s fixed point theorem.

MSC:

34A08 Fractional ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
47N20 Applications of operator theory to differential and integral equations
34A60 Ordinary differential inclusions

References:

[1] Podlubny, I., Fractional Differential Equations (1999), San Diego: Academic Press, San Diego · Zbl 0918.34010
[2] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003
[3] Ahmad, B.; Alsaedi, A.; Ntouyas, S. K.; Tariboon, J., Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities (2017), Cham: Springer, Cham · Zbl 1370.34002
[4] Liang, S.; Zhang, J., Existence of multiple positive solutions for m-point fractional boundary value problems on an infinite interval, Math. Comput. Model., 54, 1334-1346 (2011) · Zbl 1235.34023 · doi:10.1016/j.mcm.2011.04.004
[5] Wang, J. R.; Zhou, Y.; Feckan, M., On recent developments in the theory of boundary value problems for impulsive fractional differential equations, Comput. Math. Appl., 64, 3008-3020 (2012) · Zbl 1268.34032 · doi:10.1016/j.camwa.2011.12.064
[6] Zhai, C.; Xu, L., Properties of positive solutions to a class of four-point boundary value problem of Caputo fractional differential equations with a parameter, Commun. Nonlinear Sci. Numer. Simul., 19, 2820-2827 (2014) · Zbl 1510.34025 · doi:10.1016/j.cnsns.2014.01.003
[7] Henderson, J.; Kosmatov, N., Eigenvalue comparison for fractional boundary value problems with the Caputo derivative, Fract. Calc. Appl. Anal., 17, 872-880 (2014) · Zbl 1310.34007 · doi:10.2478/s13540-014-0202-4
[8] Ding, Y.; Wei, Z.; Xu, J.; O’Regan, D., Extremal solutions for nonlinear fractional boundary value problems with p-Laplacian, J. Comput. Appl. Math., 288, 151-158 (2015) · Zbl 1323.34004 · doi:10.1016/j.cam.2015.04.002
[9] Wang, H., Existence of solutions for fractional anti-periodic BVP, Results Math., 68, 227-245 (2015) · Zbl 1327.34010 · doi:10.1007/s00025-014-0431-1
[10] Ahmad, B.; Ntouyas, S. K., Some fractional-order one-dimensional semi-linear problems under nonlocal integral boundary conditions, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 110, 159-172 (2016) · Zbl 1346.34003 · doi:10.1007/s13398-015-0228-4
[11] Zhou, Y.; Ahmad, B.; Alsaedi, A., Existence of nonoscillatory solutions for fractional neutral differential equations, Appl. Math. Lett., 72, 70-74 (2017) · Zbl 1373.34119 · doi:10.1016/j.aml.2017.04.016
[12] Ge, Z. M.; Ou, C. Y., Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal, Chaos Solitons Fractals, 35, 705-717 (2008) · doi:10.1016/j.chaos.2006.05.101
[13] Faieghi, M.; Kuntanapreeda, S.; Delavari, H.; Baleanu, D., LMI-based stabilization of a class of fractional-order chaotic systems, Nonlinear Dyn., 72, 301-309 (2013) · Zbl 1268.93121 · doi:10.1007/s11071-012-0714-6
[14] Zhang, F.; Chen, G.; Li, C.; Kurths, J., Chaos synchronization in fractional differential systems, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., 371 (2013) · Zbl 1342.34070 · doi:10.1098/rsta.2012.0155
[15] Sokolov, I. M.; Klafter, J.; Blumen, A., Fractional kinetics, Phys. Today, 55, 48-54 (2002) · doi:10.1063/1.1535007
[16] Javidi, M.; Ahmad, B., Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system, Ecol. Model., 318, 8-18 (2015) · doi:10.1016/j.ecolmodel.2015.06.016
[17] Petras, I.; Magin, R. L., Simulation of drug uptake in a two compartmental fractional model for a biological system, Commun. Nonlinear Sci. Numer. Simul., 16, 4588-4595 (2011) · Zbl 1229.92043 · doi:10.1016/j.cnsns.2011.02.012
[18] Ding, Y.; Wang, Z.; Ye, H., Optimal control of a fractional-order HIV-immune system with memory, IEEE Trans. Control Syst. Technol., 20, 763-769 (2012) · doi:10.1109/TCST.2011.2153203
[19] Carvalho, A.; Pinto, C. M.A., A delay fractional order model for the co-infection of malaria and HIV/AIDS, Int. J. Dyn. Control, 5, 168-186 (2017) · doi:10.1007/s40435-016-0224-3
[20] Ntouyas, S. K.; Obaid, M., A coupled system of fractional differential equations with nonlocal integral boundary conditions, Adv. Differ. Equ., 2012 (2012) · Zbl 1350.34010 · doi:10.1186/1687-1847-2012-130
[21] Ahmad, B.; Ntouyas, S. K., Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions, Appl. Math. Comput., 266, 615-622 (2015) · Zbl 1410.34008
[22] Wang, J. R.; Zhang, Y., Analysis of fractional order differential coupled systems, Math. Methods Appl. Sci., 38, 3322-3338 (2015) · Zbl 1336.34020 · doi:10.1002/mma.3298
[23] Tariboon, J.; Ntouyas, S. K.; Sudsutad, W., Coupled systems of Riemann-Liouville fractional differential equations with Hadamard fractional integral boundary conditions, J. Nonlinear Sci. Appl., 9, 295-308 (2016) · Zbl 1330.34025 · doi:10.22436/jnsa.009.01.28
[24] Ahmad, B.; Ntouyas, S. K.; Alsaedi, A., On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions, Chaos Solitons Fractals, 83, 234-241 (2016) · Zbl 1355.34012 · doi:10.1016/j.chaos.2015.12.014
[25] Agarwal, R. P.; Ahmad, B.; Garout, D.; Alsaedi, A., Existence results for coupled nonlinear fractional differential equations equipped with nonlocal coupled flux and multi-point boundary conditions, Chaos Solitons Fractals, 102, 149-161 (2017) · Zbl 1374.34060 · doi:10.1016/j.chaos.2017.03.025
[26] Ahmad, B.; Luca, R., Existence of solutions for a sequential fractional integro-differential system with coupled integral boundary conditions, Chaos Solitons Fractals, 104, 378-388 (2017) · Zbl 1380.34118 · doi:10.1016/j.chaos.2017.08.035
[27] Alsulami, H. H.; Ntouyas, S. K.; Agarwal, R. P.; Ahmad, B.; Alsaedi, A., A study of fractional-order coupled systems with a new concept of coupled non-separated boundary conditions, Bound. Value Probl., 2017 (2017) · Zbl 1382.34005 · doi:10.1186/s13661-017-0801-1
[28] Mahmudov, N. I.; Bawaneh, S.; Al-Khateeb, A., On a coupled system of fractional differential equations with four point integral boundary conditions, Mathematics, 7 (2019) · doi:10.3390/math7030279
[29] Mahmudov, N. I.; Al-Khateeb, A., Stability, existence and uniqueness of boundary value problems for a coupled system of fractional differential equations, Mathematics, 7 (2019) · doi:10.3390/math7040354
[30] Ntouyas, S. K., Boundary value problems for nonlinear fractional differential equations and inclusions with nonlocal and fractional integral boundary conditions, Opusc. Math., 33, 117-138 (2013) · Zbl 1277.34008 · doi:10.7494/OpMath.2013.33.1.117
[31] Ahmad, B.; Ntouyas, S. K., Existence of solutions for fractional differential inclusions with four-point nonlocal Riemann-Liouville type integral boundary conditions, Filomat, 27, 6, 1027-1036 (2013) · Zbl 1418.34044 · doi:10.2298/FIL1306027A
[32] Ahmad, B.; Ntouyas, S. K.; Zhou, Y.; Alsaedi, A., A study of fractional differential equations and inclusions with nonlocal Erdélyi-Kober type integral boundary conditions, Bull. Iran. Math. Soc., 44, 1315-1328 (2018) · Zbl 1409.34004 · doi:10.1007/s41980-018-0093-y
[33] Ahmad, B.; Alghanmi, M.; Ntouyas, S. K.; Alsaedi, A., A study of fractional differential equations and inclusions involving generalized Caputo-type derivative equipped with generalized fractional integral boundary conditions, AIMS Math., 4, 12-28 (2019) · Zbl 1432.62383 · doi:10.3934/Math.2019.1.12
[34] Ahmad, B.; Ntouyas, S. K.; Alsaedi, A., A study of coupled systems of fractional differential inclusions with non-separated coupled boundary conditions, Electron. J. Differ. Equ., 2019 (2019) · Zbl 1458.35266 · doi:10.1186/s13662-019-2025-4
[35] Deimling, K., Multivalued Differential Equations (1992), Berlin: de Gruyter, Berlin · Zbl 0760.34002
[36] Hu, S.; Papageorgiou, N., Handbook of Multivalued Analysis, Theory I (1997), Dordrecht: Kluwer Academic, Dordrecht · Zbl 0887.47001
[37] Granas, A.; Dugundji, J., Fixed Point Theory (2005), New York: Springer, New York
[38] Lasota, A.; Opial, Z., An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., 13, 781-786 (1965) · Zbl 0151.10703
[39] Kisielewicz, M., Stochastic Differential Inclusions and Applications (2013), New York: Springer, New York · Zbl 1277.93002
[40] Covitz, H.; Nadler, S. B. Jr., Multivalued contraction mappings in generalized metric spaces, Isr. J. Math., 8, 5-11 (1970) · Zbl 0192.59802 · doi:10.1007/BF02771543
[41] Castaing, C.; Valadier, M., Convex Analysis and Measurable Multifunctions (1977), Berlin: Springer, Berlin · Zbl 0346.46038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.