×

Existence of solutions for fractional anti-periodic BVP. (English) Zbl 1327.34010

From the summary and introduction: We consider the following anti-periodic boundary value problem for fractional differential equations \[ \begin{gathered} {^cD^\alpha}x(t)+\lambda x(t)= f(t,x(t), x'(t)),\qquad 1<\alpha<2,\quad t\in J,\\ x(0)+ x(1)= 0,\qquad x'(0)+ x'(1)= 0,\end{gathered} \] where \(1<\alpha<2\) is a real number and \({^cD^\alpha}\) is the Caputo’s fractional derivative, \(J= [0,1]\), \(\lambda>0\) \(f:J\times\mathbb{R}\times \mathbb{R}\to\mathbb{R}\) is a given function.
The existence and uniqueness of solutions are obtained by using some fixed point theorems.

MSC:

34A08 Fractional ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
47N20 Applications of operator theory to differential and integral equations
Full Text: DOI

References:

[1] Barrett J.H.: Differential equations of non-integer order. Canad. J. Math. 6, 529-541 (1954) · Zbl 0058.10702 · doi:10.4153/CJM-1954-058-2
[2] Diethelm K., Freed A.D.: On the solution of nonlinear fractional order differential equations used in the modeling of viscoelasticity, Scientific Computing in Chemical Engineering II, pp. 217-224. Springer, Heidelberg (1999)
[3] Gaul L., Klein P., Kempfle S.: Damping description involving fractional operators. Mech. Syst. Signal Process. 5, 81-88 (1991) · doi:10.1016/0888-3270(91)90016-X
[4] Glockle W.G., Nonnenmacher T.F.: A fractional calculus approach of self-similar protein dynamics. Biophys. J. 68, 46-53 (1995) · doi:10.1016/S0006-3495(95)80157-8
[5] Hilfer R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000) · Zbl 0998.26002 · doi:10.1142/9789812817747
[6] Kilbas A.A., Srivastava H.M., Trujillo J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier, Amsterdam (2006) · Zbl 1092.45003
[7] Lakshmikantham V., Leela S., Vasundhara Devi J.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, UK (2009) · Zbl 1188.37002
[8] Metzler F., Schick W., Kilian H.G., Nonnenmacher T.F.: Relaxation in filled polymers: A fractional calculus approach. J. Chem. Phys. 103, 7180-7186 (1995) · doi:10.1063/1.470346
[9] Miller K.S., Ross B.: An Introduction to the fractional Calculus and Fractional Differential Equations. Wiley, New York (1993) · Zbl 0789.26002
[10] Oldham K.B., Spanier J.: The Fractional Calculus. Academic, New York (1974) · Zbl 0292.26011
[11] Podlubny I.: Fractional Differential Equations. Academic, New York (1993) · Zbl 0918.34010
[12] Sabatier J., Agrawal O.P., Machado J.A.T.: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, The Netherlands (2007) · Zbl 1116.00014 · doi:10.1007/978-1-4020-6042-7
[13] Samko S.G., Kilbas A.A., Marichev O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach Science Publishers, Yverdon (1993) · Zbl 0818.26003
[14] Smart D.R.: Fixed Point Theorems. Cambridge University Press, London, UK (1980) · Zbl 0427.47036
[15] Wang J., Fečkan M., Zhou Y.: Presentation of solutions of impulsive fractional Langevin equations and existence results. Eur. Phys. J. Special Topics. 222, 1857-1874 (2013) · doi:10.1140/epjst/e2013-01969-9
[16] Wang, J.R., Lin, Z.: On the impulsive fractional anti-periodic BVP modelling with constant coefficients. J. Appl. Math. Comput. doi:10.1007/s12190-013-0740-7 · Zbl 1296.34037
[17] Zhou Y., Jiao F.: Existence of mild solutions for fractional neutral evolution equation. Comput. Math. Appl. 59, 1063-1077 (2010) · Zbl 1189.34154 · doi:10.1016/j.camwa.2009.06.026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.