×

Combining integral transform and a generalized probabilistic approach of uncertainties to quantify model-parameter and model uncertainties in computational structural dynamics: the stochastic GITT method. (English) Zbl 1481.74715

Summary: The current work combines the generalized probabilistic approach of uncertainties recently developed by C. Soize [Int. J. Numer. Methods Eng. 81, No. 8, 939–970 (2010; Zbl 1183.74381)] – with the generalized integral transform technique in order to take into account two types of uncertainties: (i) model-parameter uncertainties and (ii) model uncertainties induced by modelling errors. The generalized integral transform technique (or GITT) is a powerful meshless hybrid analytical-numerical approach based on eigenfunction expansions to solve systems of partial differential equations and has been progressively advanced during the last three decades. The current work advances the state-of-the-art of the GITT approach by rigorously taking into account both model-parameter uncertainties and model uncertainties to improve the predictive accuracy of computational models developed in the context of computational structural dynamics. The developed stochastic GITT method is flexible enough to handle parametric and non-parametric probabilistic methods to quantify both types of uncertainties. It is applied to the governing equations derived with the extended Hamilton’s variational principle for predicting the in-plane and out-of-plane bending vibrations of a slender flexible structure connected to a rotating rigid shaft, resembling many complex engineered structures. Stochastic dynamic analyses in both time- and frequency-domains under both types of uncertainties are firstly carried out. Finally, stochastic model updating is carried out with the maximum likelihood and Bayesian statistical methods in order to construct both the optimum prior stochastic models of uncertainties and the posterior stochastic model of model-parameter uncertainties, using the first natural frequencies as observed data.

MSC:

74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
62F15 Bayesian inference

Citations:

Zbl 1183.74381
Full Text: DOI

References:

[1] Langley, R., Unified approach to probabilistic and possibilistic analysis of uncertain systems, J. Eng. Mech., 126, 1163-1172 (2000)
[2] Schueller, G. I., On the treatment of uncertainties in structural mechanics and analysis, Comput. Struct., 85, 235-243 (2007)
[3] Deodatis, G.; Spanos, P. D., 5th International Conference on Computational Stochastic Mechanics, Special Issue Probab. Eng. Mech., 23, 103-346 (2008)
[4] Ghanem, R.; Doostan, R.; Red-Horse, J., A probability construction of model validation, Comput. Methods Appl. Mech. Eng., 197, 2585-2595 (2008) · Zbl 1213.74007
[5] Mace, R.; Worden, W.; Manson (Editors), G., Uncertainty in structural dynamics, Spec. Issue J. Sound Vib., 288, 431-790 (2005)
[6] Schueller (Editor), G. I., Computational methods in stochastic mechanics and reliability analysis, Comput. Methods Appl. Mech. Eng., 194, 1251-1795 (2005)
[7] Schueller, G. I., Developments in stochastic structural mechanics, Arch. Appl. Mech., 75, 755-773 (2006) · Zbl 1168.74398
[8] Schueller, G. I.; Jensen, H. A., Computational methods in optimization considering uncertainties - an overview, Comput. Methods Appl. Mech. Eng., 198, 2-13 (2008) · Zbl 1194.74258
[9] Schueller, G. I.; Pradlwarter, H. J., Uncertainty analysis of complex structural systems, Int. J. Numer. Methods Eng., 80, 881-913 (2009) · Zbl 1176.74214
[10] M. Eldred, S. Giunta, S. Collins, Second-order corrections for surrogate-based optimization with model hierarchies, Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, August 30th - September 1st, Albany, New York AIAA Paper 2004-4457(2004).
[11] Wan, H. P.; Mao, Z.; Todd, M. D.; Ren, W. X., Analytical uncertainty quantification for modal frequencies with structural parameter uncertainty using a gaussian process metamodel, Eng. Struct., 75, 577-589 (2014)
[12] Wan, H. P.; Ren, W.-X.; Todd, M. D., An efficient metamodeling approach for uncertainty quantification of complex systems with arbitrary parameter probability distributions, Int. J. Numer. Methods Eng., 109(5), 739-760 (2017) · Zbl 07874321
[13] Wan, H. P.; Todd, M. D.; Ren, W.-X., Statistical framework for sensitivity analysis of structural dynamic characteristics, J. Eng. Mech., 143(9), 1-15 (2017)
[14] Most, T., Assessment of structural simulation models by estimating uncertainties due to model selection and model simplification, Comput. Struct., 89, 1664-1672 (2011)
[15] Beck, J. L., Bayesian system identification based on probability logic, Struct. Control Health Monitor., 17, 825-847 (2010)
[16] Beck, J. L.; Yuen, K. V., Model selection using response measurements: Bayesian probabilistic approach, J. Eng. Mech., 130, 192-203 (2004)
[17] Mutto, M.; Beck, J. L., Bayesian updating and model class selection for hysteretic structural models using stochastic simulation, J. Vib. Control, 14, 7-34 (2008) · Zbl 1229.74065
[18] Castaldo, P.; Gino, D.; Mancini, G., Safety formats for non-linear finite element analysis of reinforced concrete structures: discussion, comparison and proposals, Eng. Struct., 193, 136-153 (2019)
[19] Castaldo, P.; Gino, D.; Bertagnoli, G.; Mancini, G., Resistance model uncertainty in non-linear finite element analyses of cyclically loaded reinforced concrete systems, Eng. Struct., 211, 1-32 (2020)
[20] Soize, C., Generalized probabilistic approach of uncertainties in computational dynamics using random matrices and polynomial chaos decompositions, Int. J. Numer. Methods Eng., 81, 939-970 (2010) · Zbl 1183.74381
[21] Soize, C., A nonparametric model of random uncertainties for reduced matrix models in structural dynamics, Probab. Eng. Mech., 15, 277-294 (2000)
[22] Soize, C., Stochastic modeling of uncertainties in computational structural dynamics - Recent theoretical advances, J. Sound Vib., 332, 2379-2395 (2013)
[23] Soize, C., Bayesian posteriors of uncertainty quantification in computational structural dynamics for low- and medium-frequency ranges, Comput. Struct., 126, 41-55 (2013)
[24] Batou, A.; Soize, C.; Audebert, S., Model identification in computational stochastic dynamics using experimental modal data, Mech. Syst. Signal Process., 50-51, 307-322 (2014)
[25] Cotta, R. M., Integral Transforms in Computational Heat and Fluid Flow (1993), CRC Press, Boca Raton · Zbl 0974.35004
[26] F. Scofano Neto, R.O.C. Guedes, R.M. Cotta, Unsteady conjugated heat transfer analysis in low Reynolds pipe flow, Proceedings of the 3rd International Conference on Advanced Computational Methods in Heat Transfer, Southampton, UK(1994) 115-122.
[27] Ribeiro, J. W.; Cotta, R. M., On the solution of nonlinear drying problems in capillary porous media through integral transformation of Luikov equations, Int. J. Numer. Methods Eng., 38, 1001-1020 (1995) · Zbl 0823.76081
[28] Almeida, A. R.; Cotta, R. M., A comparison of convergence acceleration schemes for eigenfunction expansions of partial differential equations, Int. J. Numer. Methods Heat Fluid Flow, 6, 85-97 (1996) · Zbl 0969.76571
[29] Cotta, R. M., The Integral Transform Method in Thermal and Fluids Sciences and Engineering (1998), Begell House, New York · Zbl 0906.00025
[30] M.D. Mikhailov, R.M. Cotta, Heat conduction with nonlinear boundary conditions: hybrid solutions via integral transforms and symbolic computation, Proceedings of the 11th International Heat Transfer Conference, Seoul, Korea 7 (1998) 77-81.
[31] Sphaier, L. A.; Cotta, R. M., Integral transform analysis of multidimensional eigenvalue problems within irregular domains, Numer. Heat Transf. Part B Fund., 38, 157-175 (2000)
[32] Pérez Guerrero, J. S.; Quaresma, J. N.N.; Cotta, R. M., Simulation of laminar flow inside ducts of irregular geometry using integral transforms, Comput. Mech., 25, 413-420 (2000) · Zbl 0966.76069
[33] Leal, M. A.; Machado, H. A.; Cotta, R. M., Integral transform solutions of transient natural convection in enclosures with variable fluid properties, Int. J. Heat Mass Transf., 43, 3977-3990 (2000) · Zbl 0982.76083
[34] Neto, H. L.; Quaresma, J. N.N.; Cotta, R. M., Natural convection in three-dimensional porous cavities: integral transform method, Int. J. Heat Mass Transf., 45, 3013-3032 (2002) · Zbl 1010.76083
[35] R.M. Cotta, C.A.C. Santos, S. Kakaç, Unified hybrid theoretical analysis of nonlinear convective heat transfer, Proceedings of IMECE2007, ASME International Mechanical Engineering Congress & Exposition, Paper No. IMECE2007-41412, Seattle, Washington, DC (2007).
[36] R.M. Cotta, L.A. Sphaier, J.N.N. Quaresma, C.P. Naveira-Cotta, Unified integral transform approach in the hybrid solution of multidimensional nonlinear convection-diffusion problems, Proceedings of the International Heat Transfer Conference, Paper No. IHTC14-22396, Washington, DC (2010).
[37] Naveira-Cotta, C. P.; Orlande, H. R.B.; Cotta, R. M., Inverse analysis with integral transformed temperature fields: identification of thermophysical properties in heterogeneous media, Int. J. Heat Mass Transf., 54, 1506-1519 (2011) · Zbl 1211.80037
[38] Knupp, D. C.; Naveira-Cotta, C. P.; Cotta, R. M.; Kakaç, S., Transient conjugated heat transfer in microchannels: integral transforms with single domain formulation, Int. J. Therm. Sci., 88, 248-257 (2015)
[39] Cotta, R. M.; Knupp, D. C.; Naveira-Cotta, C. P., Nonlinear eigenvalue problem in the integral transforms solution of convection-diffusion with nonlinear boundary conditions, Int. J. Numer. Methods Heat Fluid Flow, 26, 767-789 (2016) · Zbl 1356.76227
[40] Matt, C. F.; Quaresma, J. N.N.; Cotta, R. M., Analysis of magnetohydrodynamic natural convection in closed cavities through integral transforms, Int. J. Heat Mass Transf., 113, 502-513 (2017)
[41] Lisboa, K. M.; Cotta, R. M., Hybrid integral transforms for flow development in ducts partially filled with porous media, Proc. R. Soc. A Math. Phys. Eng. Sci., 475 (2209), 1-20 (2018) · Zbl 1402.76127
[42] Matt, C. F., On the application of generalized integral transform technique to wind-induced vibrations on overhead conductors, Int. J. Numer. Methods Eng., 78, 901-930 (2009) · Zbl 1183.74363
[43] An, C.; Su, J., Dynamic response of clamped axially moving beams: integral transform solution, Appl. Math. Comput., 218, 249-259 (2011) · Zbl 1259.74018
[44] An, C.; Su, J., Dynamic analysis of axially moving orthotropic plates: integral transform solution, Appl. Math. Comput., 228, 489-507 (2014) · Zbl 1364.74043
[45] Matt, C. F., Simulation of the transverse vibrations of a cantilever beam with an eccentric tip mass in the axial direction using integral transforms, Appl. Math. Model., 37, 9338-9354 (2013) · Zbl 1427.74092
[46] Matt, C. F., Combined classical and generalized integral transform approaches for the analysis of the dynamic behavior of a damaged structure, Appl. Math. Model., 37, 8431-8450 (2013) · Zbl 1438.74079
[47] Matt, C. F., Transient response of general one-dimensional distributed systems through eigenfunction expansion with an implicit filter scheme, Appl. Math. Model., 39, 2470-2488 (2015) · Zbl 1443.35026
[48] He, Y.; An, C.; Su, J., Generalized integral transform solution for free vibration of orthotropic rectangular plates with free edges, J. Brazil. Soc. Mech. Sci. Eng., 42 (183), 1-10 (2020)
[49] Burton, T.; Sharpe, D.; Jenkins, N.; Bossanyi, E., Wind Energy Handbook (2001), John Wiley & Sons, Ltd., Chichester
[50] Yigit, A.; Scott, R. A.; Ulsoy, A. G., Flexural motion of a radially rotating beam attached to a rigid body, J. Sound Vib., 121, 201-210 (1988) · Zbl 1235.74203
[51] Meirovitch, L., Analytical Methods in Vibrations (1967), Macmillan Publishing Corporation, Inc., New York · Zbl 0166.43803
[52] Rao, S. S., Mechanical Vibrations (1995), Addison Wesley Publishing Company, Inc., New York · Zbl 0714.73050
[53] Soize, C., Random matrix theory for modelling uncertainties in computational mechanics, Comput. Methods Appl. Mech. Eng., 194, 1333-1366 (2005) · Zbl 1083.74052
[54] Jaynes, E. T., Information theory and statistical mechanics, Phys. Rev., 108, 171-190 (1957) · Zbl 0084.43701
[55] Robert, C. P.; Casella, G., Monte Carlo statistical methods (2010), Springer
[56] Zhang, X. Z.; King, M. L.; Hyndman, R. J., A Bayesian approach to bandwidth selection for multivariate kernel density estimation, Comput. Stat. Data Anal., 50, 3009-3031 (2006) · Zbl 1445.62077
[57] Ching, J.; Chen, Y. C., Transitional Markov Chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging, J. Eng. Mech., 133, 816-832 (2007)
[58] Brincker, R.; Ventura, C., Introduction to Operational Modal Analysis (2015), John Wiley & Sons, Ltd., Chichester · Zbl 1337.74001
[59] Juang, J. N.; Pappa, R. S., An eigensystem realization algorithm for modal parameter identification and model reduction, J. Guid. Control Dyn., 8(5), 620-627 (1985) · Zbl 0589.93008
[60] Reynders, E., System identification methods for (operational) modal analysis: review and comparison, Arch. Comput. Methods Eng., 19, 51-124 (2012) · Zbl 1354.93004
[61] Kaipio, J.; Sommersalo, E., Statistical and Computational Inverse Problems (2004), Springer
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.