×

Hybrid integral transforms for flow development in ducts partially filled with porous media. (English) Zbl 1402.76127

Summary: A hybrid numerical-analytical solution is developed for laminar flow development in a parallel plate duct partially filled with porous media. The integral transform method is employed in combination with a single domain reformulation strategy for representing the heterogeneous media within the channel. A novel eigenfunction expansion basis is proposed, including abrupt spatial variations of physical properties due to the domain transitions. The introduction of the new basis allows for a solution with similar convergence rates as in previous applications with simpler formulations, as demonstrated through a careful convergence analysis of the expansions. The inherent automatic error control characteristic of the integral transforms approach then provides benchmark results for the developing velocity profile. Moreover, a physical analysis further verifies the consistency of both the proposed expansion and the mixed symbolic-numerical code developed. A detailed verification with a finite-element commercial code is also performed.

MSC:

76S05 Flows in porous media; filtration; seepage
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D08 Lubrication theory
65N99 Numerical methods for partial differential equations, boundary value problems

Software:

PASVA3; COMSOL
Full Text: DOI

References:

[1] Blessent, D.; Jørgensen, PR; Therrien, R., Comparing discrete fracture and continuum models to predict contaminant transport in fractured porous media, Groundwater, 52, 84-95, (2014) · doi:10.1111/gwat.12032
[2] Cotta, RM; Ungs, MJ; Mikhailov, MD, Contaminant transport in finite fractured porous medium: integral transforms and lumped-differential formulations, Ann. Nucl. Eng., 30, 261-285, (2003) · doi:10.1016/S0306-4549(02)00060-9
[3] Sandler, J.; Fowler, G.; Cheng, K.; Kovscek, AR, Solar-generated steam for oil recovery: reservoir simulation, economic analysis, and life cycle assessment, Energy Convers. Manag., 77, 721-732, (2014) · doi:10.1016/j.enconman.2013.10.026
[4] Marschewski, J.; Brenner, L.; Ebejer, N.; Ruch, P.; Michel, B.; Poulikakos, D., 3D-printed fluidic networks for high-power-density heat-managing miniaturized redox flow batteries, Energy Environ. Sci., 10, 780-787, (2017) · doi:10.1039/C6EE03192G
[5] Lisboa, KM; Marschewski, J.; Ebejer, N.; Ruch, P.; Cotta, RM; Michel, B.; Poulikakos, D., Mass transport enhancement in redox flow batteries with corrugated fluidic networks, J. Power Sources., 359, 322-331, (2017) · doi:10.1016/j.jpowsour.2017.05.038
[6] Beavers, GS; Joseph, DD, Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30, 197-207, (1967) · doi:10.1017/S0022112067001375
[7] Nield, DA, Onset of convection in a fluid layer overlying a layer of a porous medium, J. Fluid Mech., 81, 513-522, (1977) · Zbl 0364.76032 · doi:10.1017/S0022112077002195
[8] Poulikakos, D.; Bejan, A.; Selimos, B.; Blake, KR, High Rayleigh number in a fluid overlying a porous bed, Int. J. Heat Fluid Flow., 7, 109-116, (1986) · doi:10.1016/0142-727X(86)90056-1
[9] Brinkman, HC, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, App. Sci. Res., A1, 27-34, (1949) · Zbl 0041.54204 · doi:10.1007/BF02120313
[10] Neale, G.; Nader, W., Practical significance of Brinkman extension of Darcy’s law: coupled parallel flows within a channel and a boundary porous medium, Can. J. Chem. Eng., 52, 472-478, (1974) · doi:10.1002/cjce.5450520407
[11] Hirata, SC; Goyeau, B.; Gobin, D.; Carr, M.; Cotta, RM, Linear stability of natural convection in superposed fluid and porous layers: influence of the interfacial modelling, Int. J. Heat Mass Transf., 50, 1356-1367, (2007) · Zbl 1118.80003 · doi:10.1016/j.ijheatmasstransfer.2006.09.038
[12] Hirata, SC; Goyeau, B.; Gobin, D.; Chandesris, M.; Jamet, D., Stability of natural convection in superposed fluid and porous layers: Equivalence of the one- and two-domain approaches, Int. J. Heat Mass Transf., 52, 533-536, (2009) · Zbl 1156.80330 · doi:10.1016/j.ijheatmasstransfer.2008.07.045
[13] Cotta, RM, Integral transforms in computational heat and fluid flow, (1993), CRC Press · Zbl 0974.35004
[14] Cotta, RM; Mikhailov, MD, Heat conduction: lumped analysis, integral transforms, symbolic computation, (1997), Wiley Interscience
[15] Cotta, RM, The integral transform method in thermal, fluid sciences and engineering, (1998), Begell House · Zbl 0906.00025
[16] Cotta, RM; Knupp, DC; Naveira-Cotta, CP, Analytical heat and fluid flow in microchannels and microsystems, (2016), Springer
[17] Celli, M.; Alves, LSDB; Barletta, A., Nonlinear stability analysis of Darcy’s flow with viscous heating, Proc. R. Soc. A, 472, 20160036, (2016) · Zbl 1371.76132 · doi:10.1098/rspa.2016.0036
[18] Carvalho, TMB; Cotta, RM; Mikhailov, MD, Flow development in entrance region of ducts, Commun. Numer. Methods Eng., 9, 503-509, (1993) · Zbl 0777.76067 · doi:10.1002/cnm.1640090608
[19] Machado, HA; Cotta, RM, Integral transform method for boundary layer equations in simultaneous heat and fluid flow problems, Int. J. Num. Meth. Heat Fluid Flow., 5, 225-237, (1995) · Zbl 0826.76067 · doi:10.1108/EUM0000000004118
[20] Bolivar, MAH; Cotta, RM; Lage, PLC, Integral transform solution of the laminar thermal boundary layer problem for flow past two-dimensional and axisymmetric bodies, Num. Heat Transf. Part A. Appl., 33, 779-797, (1998) · doi:10.1080/10407789808913966
[21] Lima, GGC; Santos, CAC; Haag, A.; Cotta, RM, Integral transform solution of internal flow problems based on Navier-Stokes equations and primitive variables formulation, Int. J. Num. Meth. Eng., 69, 544-561, (2007) · Zbl 1194.76224 · doi:10.1002/nme.1780
[22] Perez-Guerrero, JS; Cotta, RM, Integral transform solution for the lid-driven cavity flow problem in streamfunction-only formulation, Int. J. Num. Meth. Fluids., 15, 399-409, (1992) · Zbl 0753.76139 · doi:10.1002/fld.1650150403
[23] Perez-Guerrero, JS; Cotta, RM, Integral transform solution of developing laminar duct flow in Navier-Stokes formulation, Int. J. Numer. Meth. Fluids., 20, 1203-1213, (1995) · Zbl 0840.76075 · doi:10.1002/fld.1650201102
[24] Perez-Guerrero, JS; Cotta, RM, Benchmark integral transform results for flow over a backward-facing step, Comput. Fluids., 25, 527-540, (1996) · Zbl 0900.76427 · doi:10.1016/0045-7930(96)00005-9
[25] Lima, JA; Perez-Guerrero, JS; Cotta, RM, Hybrid solution of the averaged Navier-Stokes equations for turbulent flow, Comput. Mech., 19, 297-307, (1997) · Zbl 0892.76067 · doi:10.1007/s004660050178
[26] Pereira, LM; Perez-Guerrero, JS; Cotta, RM, Integral transformation of the Navier-Stokes equations in cylindrical geometry, Comput. Mech., 21, 60-70, (1998) · Zbl 0909.76018 · doi:10.1007/s004660050
[27] Leal, MA; Machado, HA; Cotta, RM, Integral transform solutions of transient natural convection in enclosures with variable fluid properties, Int. J. Heat Mass Transf., 43, 3977-3990, (2000) · Zbl 0982.76083 · doi:10.1016/S0017-9310(00)00023-5
[28] Perez-Guerrero, JS; Quaresma, JNN; Cotta, RM, Simulation of laminar flow inside ducts of irregular geometry using integral transforms, Comput. Mech., 25, 413-420, (2000) · Zbl 0966.76069 · doi:10.1007/s004660050488
[29] Ramos, R.; Perez-Guerrero, JS; Cotta, RM, Stratified flow over a backward facing step:- Hybrid solution by integral transforms, Int. J. Num. Meth. in Fluids., 35, 173-197, (2001) · Zbl 0990.76069 · doi:10.1002/1097-0363(20010130)35:2<173::AID-FLD88>3.0.CO;2-U
[30] Silva, RL; Quaresma, JNN; Santos, CAC; Cotta, RM, Integral transforms solution for flow development in wavy wall ducts, Int. J. Numer. Meth. Heat Fluid Flow., 21, 219-243, (2011) · doi:10.1108/09615531111105416
[31] Matt, CFT; Quaresma, JNN; Cotta, RM, Analysis of magnetohydrodynamic natural convection in closed cavities through integral transforms, Int. J. Heat Mass Transf., 113, 502-513, (2017) · doi:10.1016/j.ijheatmasstransfer.2017.05.043
[32] Quaresma, JNN; Cotta, RM, Integral transform method for the Navier-Stokes equations in steady three-dimensional flow, 1, 281-287, (1997)
[33] Knupp, DC; Naveira-Cotta, CP; Cotta, RM, Theoretical analysis of conjugated heat transfer with a single domain formulation and integral transforms, Int. Commun. Heat Mass. Transf., 39, 355-362, (2012) · doi:10.1016/j.icheatmasstransfer.2011.12.012
[34] Knupp, DC; Cotta, RM; Naveira-Cotta, CP, Heat transfer in microchannels with upstream-downstream regions coupling and wall conjugation effects, Num. Heat Transf. Part B. Fundam., 64, 365-387, (2013) · doi:10.1080/10407790.2013.810535
[35] Knupp, DC; Naveira-Cotta, CP; Cotta, RM, Conjugated convection-conduction analysis in microchannels with axial diffusion effects and a single domain dormulation, J. Heat Transfer., 135, 91401, (2013) · doi:10.1115/1.4024425
[36] Knupp, DC; Naveira-Cotta, CP; Cotta, RM, Theoretical-experimental analysis of conjugated heat transfer in nanocomposite heat spreaders with multiple microchannels, Int. J. Heat Mass Transf., 74, 306-318, (2014) · doi:10.1016/j.ijheatmasstransfer.2014.03.005
[37] Knupp, DC; Cotta, RM; Naveira-Cotta, CP; Kakaç, S., Transient conjugated heat transfer in microchannels: integral transforms with single domain formulation, Int. J. Therm. Sci., 88, 248-257, (2015) · doi:10.1016/j.ijthermalsci.2014.04.017
[38] Knupp, DC; Cotta, RM; Naveira-Cotta, CP, Fluid flow and conjugated heat transfer in arbitrarily shaped channels via single domain formulation and integral transforms, Int. J. Heat Mass Transf., 82, 479-489, (2015) · doi:10.1016/j.ijheatmasstransfer.2014.11.007
[39] Ochoa-Tapia, JA; Whitaker, S., Momentum transfer at the boundary between a porous medium and a homogeneous fluid - I. Theoretical development, Int. J. Heat Mass Transf., 38, 2635-2646, (1995) · Zbl 0923.76320 · doi:10.1016/0017-9310(94)00346-W
[40] Pimentel, LCG; Pérez Guerrero, JS; Ulke, AG; Duda, FP; Heilbron Filho, PFL, Assessment of the unified analytical solution of the steady-state atmospheric diffusion equation for stable conditions, Proc. R. Soc. A, 470, 20140021, (2014) · doi:10.1098/rspa.2014.0021
[41] Pereyra, V., PASVA3: An adaptive finite-difference FORTRAN program for first order nonlinear, ordinary boundary value problems, Lec Notes Comp. Sci., 76, 67-88, (1979) · Zbl 0434.65067 · doi:10.1007/3-540-09554-3_4
[42] COMSOL Multiphysics
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.