×

Alternating direction method of multiplier for the unilateral contact problem with an automatic penalty parameter selection. (English) Zbl 1481.49031

Summary: We propose an alternating direction method of multiplier (ADMM) for the unilateral (frictionless) contact problem with an optimal parameter selection. We first introduce an auxiliary unknown to seprate the linear elasticity subproblem from the unilateral contact condition. Then an alternating direction is applied to the corresponding augmented Lagrangian. By eliminating the primal and auxiliary unknowns, at the discrete level, we derive a pure dual algorithm, starting point for the convergence analysis and the optimal parameter approximation. Numerical experiments are proposed to illustrate the efficiency of the proposed (optimal) penalty parameter selection method.

MSC:

49M37 Numerical methods based on nonlinear programming
49J10 Existence theories for free problems in two or more independent variables
74M15 Contact in solid mechanics

References:

[1] Kikuchi, N.; Oden, J. T., Contact problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods (1988), Studies in Applied Mathematics. SIAM: Studies in Applied Mathematics. SIAM Philadelphia · Zbl 0685.73002
[2] Hüeber, S.; Stadler, G.; Wohlmuth, B. I., A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction, SIAM J. Sci. Comput., 30, 572-596 (2008) · Zbl 1158.74045
[3] Ito, K.; Kunisch, K., Semi-smooth Newton methods for the Signorini problem, Applications of Mathematics, 53, 455-568 (2008) · Zbl 1199.49064
[4] Koko, J., Uzawa block relaxation for the unilateral contact problem, J. Comput. Appl. Math., 235, 2343-2356 (2011) · Zbl 1260.74031
[5] Stadler, G., Path-following and augmented Lagrangian methods for contact problems in linear elasticity, J. Comput. Appl. Math., 203, 533-547 (2007) · Zbl 1119.49028
[6] Wriggers, P., Computational Contact Mechanics (2002), John Wiley & Sons
[7] Fortin, M.; Glowinski, R., Augmented Lagrangian Methods: Application to the Numerical Solution of Boundary-Value Problems (1983), Amsterdam: Amsterdam North-Holland · Zbl 0525.65045
[8] Glowinski, R.; Tallec, P. L., Augmented Lagrangian and Operator-splitting Methods in Nonlinear Mechanics (1989), Studies in Applied Mathematics, SIAM: Studies in Applied Mathematics, SIAM Philadelphia · Zbl 0698.73001
[9] Haslinger, J.; Kučera, R.; Dostál, Z., An algorithm for the numericla realization of 3D contact problems with Coulomb friction, J. Comput. Appl. Math., 164-165, 387-408 (2004) · Zbl 1107.74328
[10] M. Hintermüller, M.; Ito, K.; Kunisch, K., The primal-dual active set strategy as a semismooth Newton method, SIAM J. Optim., 13, 865-888 (2003) · Zbl 1080.90074
[11] Haslinger, J.; Janovský, V.; Kučera, R.; Motyčková, K., Nonsmooth continuation of parameter dependent static contact problems with Coulomb friction, Math. Comput. Simulation, 145, 62-78 (2018) · Zbl 1485.74089
[12] Goldstein, T.; Zhang, X., Operator splitting methods in compressive sensing and sparse approximation, (Glowinski, R.; Osher, S.; Yin, W., Splitting Methods in Communication, Imaging, Science, and Engineering (2017), Springer), 301-343 · Zbl 1372.65171
[13] Yang, Y.; Zhang, Y., Alternating direction algorithms for \(l_1\)-problems in compressive sensing, SIAM J. Sci. Comput., 33, 250-278 (2011) · Zbl 1256.65060
[14] Chan, S. H.; Wang, X.; Elgendy, O. A., Plug-and-play ADMM for image restoration: Fixed-point convergence and applications, IEEE Transactions on Computational Imaging, 3, 84-98 (2016)
[15] Koko, J.; Jehan-Besson, S., An augmented lagrangian method for \(T V_g + L^1\)-norm minimization, J. Math. Imaging Vis., 38, 182-196 (2010) · Zbl 1255.94019
[16] Lu, X.; Lü, X., ADMM for image restoration based on nonlocal simultaneous sparse Bayesian coding, Signal Processing: Image Communication, 70, 157-173 (2019)
[17] Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J., Distributed optimization and statistical learning via alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3, 1-122 (2011) · Zbl 1229.90122
[18] Parikh, N.; Boyd, S., Proximal algorithms, Foundations and Trends in optimization, 1, 123-231 (2013)
[19] Lin, F.; Fardad, M.; Jovanović, M. R., Design of optimal sparse feedback gains via the alternating direction method of multipliers, IEEE Transactions on Automatic Control, 58, 2426-2431 (2013) · Zbl 1369.93215
[20] Glowinski, R.; Marocco, A., Sur l’approximation par éléments finis d’ordre un, et la résolution par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires, RAIRO Anal. Num., 9, 41-76 (1975) · Zbl 0368.65053
[21] Koko, J., Uzawa block relaxation domain decomposition method for the two-body contact problem with Tresca friction, Comput. Methods. Appl. Mech. Engrg., 198, 420-431 (2008) · Zbl 1228.74086
[22] Koko, J., A survey on dual decomposition methods, SeMA Journal, 62, 27-59 (2013) · Zbl 1269.49055
[23] Haslinger, J.; Dostál, Z.; Kučera, R., On the splitting type algorithm for the numerical realization of the contact problems with Coulomb friction, Comput. Methods. Appl. Mech. Engrg., 191, 2261-2281 (2002) · Zbl 1131.74344
[24] Horn, R. A.; Johnson, C. R., Matrix Analisys (2013), Cambrige University Press · Zbl 1267.15001
[25] Koko, J., A MATLAB mesh generator for the two-dimensional finite element method, Appl. Math. Comput., 250, 650-664 (2015) · Zbl 1328.65245
[26] Koko, J., Fast MATLAB assembly of FEM matrices in 2D and 3D using cell array approach, Int. J. Model. Simul. Sci. Comput., 7, e1650010 (2016)
[27] Johnson, K. L., Contact Mechanics (1987), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0599.73108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.