×

Estimates for the \(\bar\partial\)-Neumann problem and nonexistence of \(C^2\) Levi-flat hypersurfaces in \(\mathbb{C} P^n\). (English) Zbl 1057.32012

The article contains two main results, both of which are significant.
Theorem 1: There exists no real Levi-flat hypersurface of class \(C^2\) in complex projective space \({\mathbb C} P^n\) (\(n\geq2\)). Theorem 2: If \(\Omega\) is a pseudoconvex domain with class \(C^2\) boundary in \({\mathbb C}P^n\) (\(n\geq2\)), then the \(\overline{\partial}\)-Neumann operator \(N\) exists on square-integrable \((p,q)\)-forms; moreover, there exists a positive \(\epsilon\) (depending on the order of plurisubharmonicity of the distance function of \(\Omega\)) such that \(N\), the operator \(\overline{\partial} N\), the operator \(\overline{\partial}^{*} N\), and the Bergman projection are continuous on the Sobolev space \(W^s(\Omega)\) when \(0<s<\epsilon\).
Y.-T. Siu previously proved theorem 1 under a stronger smoothness hypothesis, first when \(n\geq3\) [Ann. Math. (2) 151, No. 3, 1217–1243 (2000; Zbl 0980.53065)] and then when \(n=2\) [Ann. Math. (2) 156, No. 2, 595–621 (2002; Zbl 1030.53071)]. The real-analytic case was proved when \(n\geq3\) by A. Lins Neto [Ann. Inst. Fourier 49, No. 4, 1369–1385 (1999; Zbl 0963.32022)] and when \(n=2\) by T. Ohsawa [Nagoya Math. J. 158, 95–98 (2000; Zbl 1023.32026)].
The authors offer two proofs of theorem 1, both based on theorem 2, which is itself a fundamental result of independent interest. The first proof, based on solving a \(\overline{\partial}_b\)-problem by extending to the interior, works when \(n\geq3\) and the boundary is smooth of class \(C^{2,\alpha}\) for some positive \(\alpha\).
The second proof is based on a Liouville-type theorem that the authors state as
Proposition 4.5: If \(\Omega\) is a pseudoconcave domain in \({\mathbb C} P^n\) (\(n\geq2\)) with class \(C^2\) boundary, then the space of \(\overline{\partial}\)-closed square-integrable \((p,0)\)-forms on \(\Omega\) is trivial when \(1\leq p\leq n\) and consists of constant functions when \(p=0\).
The erratum attempts to fix a gap in the proof of this proposition, but in a subsequent paper [\(\overline{\partial}\)-closed extensions of forms and nonexistence of Levi-flat hypersurfaces in \({\mathbb C} P^2\), preprint (2004)] the authors reformulate the proposition as a conjecture, stating that it remains unproved. That paper explains how to modify the first proof of theorem 1 to make the proof work for class \(C^2\) boundary when \(n\geq2\).

MSC:

32W05 \(\overline\partial\) and \(\overline\partial\)-Neumann operators
32V40 Real submanifolds in complex manifolds
35N15 \(\overline\partial\)-Neumann problems and formal complexes in context of PDEs
53C40 Global submanifolds

References:

[1] Andreotti, A., Vesentini, E.: Carleman estimates for the Laplace-Beltrami equation on complex manifolds. Inst. Hautes Etudes Sci. Publ. Math. 25, 81–130 (1965) · Zbl 0138.06604 · doi:10.1007/BF02684398
[2] Barrett, D. E.: Behavior of the Bergman projection on the Diederich-Fornaess worm. Acta Math 168, 1–8 (1992) · Zbl 0779.32013 · doi:10.1007/BF02392975
[3] Barrett, D. E., Fornaess, J. E.: On the smoothness of Levi-foliations. Publ. Mat.32, 171–177 (1988) · Zbl 0663.32014
[4] Berndtsson, B., Charpentier, P.: A Sobolev mapping property of the Bergman kernel. Math. Zeitschrift 235, 1–10 (2000) · Zbl 0969.32015 · doi:10.1007/s002090000099
[5] Boas, H.: The Szegö projection: Sobolev estimates in regular domains. Trans. Amer. Math. Soc. 300, 109–132 (1987) · Zbl 0622.32006
[6] Boas, H., Shaw, M.-C.: Sobolev Estimates for the Lewy Operator on weakly pseudoconvex boundaries. Math. Annalen. 274, 221–231 (1986) · Zbl 0588.32023 · doi:10.1007/BF01457071
[7] Boas, H.P., Straube, E.J.: Equivalence of regularity for the Bergman projection and the -Neumann operator. Manuscripta Math. 67, 25–33 (1990) · Zbl 0695.32011
[8] Boas, H. P., Straube, E. J.: Sobolev estimates for the -Neumann operator on domains in Cn admitting a defining function that is plurisubharmonic on the boundary. Math. Zeit. 206, 81–88 (1991) · Zbl 0696.32008
[9] Boas, H. P., Straube, E. J.: Global regularity of the -Neumann problem: a survey of the L2-Sobolev theory. In the book ”Several complex variables” (edited by M. Schneider and Y-T Siu, Berkeley, CA, 1995–1996), Math. Sci. Res. Inst. Publ. 37, Cambridge Univ. Press, Cambridge, 1999, pp. 79–111
[10] Calabi, E.: Hopf’s maximum principle with an application to Riemannian geometry. Duke Math. J. 25, 45–56 (1957) · Zbl 0079.11801 · doi:10.1215/S0012-7094-58-02505-5
[11] Cao, J., Shaw, M.-C.: A new proof of the Cheeger-Gromoll soul conjecture and the Takeuchi theorem. Preprint 2003, submitted
[12] Chavel, I.: Riemannian geometry, a modern introduction. Cambridge University Press, Cambridge, England 1997 · Zbl 1099.53001
[13] Cheeger, J., Ebin, D.: Comparison Theorems in Riemannian Geometry. North-Holland, New York 1975 · Zbl 0309.53035
[14] Chen, S.-C., Shaw, M.-C.: Partial Differential Equations in Several Complex Variables. American Math. Society-International Press, Studies in Advanced Mathematics, Volume 19 Providence, R.I. 2001 · Zbl 0963.32001
[15] Chern, S. S.: Complex Manifolds without Potential Theory, 2nd ed. Springer-Verlag, New York, 1979 · Zbl 0444.32004
[16] Christ, M.: Global Cirregularity of the -Neumann problem for worm domains. J. Amer. Math. Soc. 9, 1171–1185 (1996) · Zbl 0945.32022
[17] Demailly, J.-P.: Estimations L2 pour l’opérateur d’un fibré vectoriel holomorphe sémi-positif. Ann. of Scient. Ec. Norm. Sup 15, 457–511 (1982)
[18] Demailly, J.-P.: Complex Analytic and Differential Geometry. To be Published by American Math. Society
[19] Diederich, K., Fornaess, J. E.: Pseudoconvex domains: Bounded strictly plurisubharmonic functions. Invent. Math. 39, 129–141 (1977) · Zbl 0353.32025 · doi:10.1007/BF01390105
[20] Diederich, K., Fornaess, J. E.: Pseudoconvex domains: An example with Nontrivial Nebenhülle. Math. Ann 225, 275–292 (1977) · doi:10.1007/BF01425243
[21] Folland, G. B., Kohn, J. J.:The Neumann Problem for the Cauchy-Riemann Complex. Ann. Math. Studies 75, Princeton University Press, Princeton, N.J., 1972 · Zbl 0247.35093
[22] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, 2nd edition. Springer-Verlag, New York, 1983 · Zbl 0562.35001
[23] Greene, R. E., Wu, H.: On Kähler manifolds of positive bisectional curvature and a theorem of Hartogs. Special issue dedicated to the seventieth birthday of Erich Kähler. Abh. Math. Sem. Univ. Hamburg, 47, 171–185 (1978) · Zbl 0431.32017
[24] Greene, R. E., Wu, H.: Function theory on manifolds which possess a pole. Springer Verlag, Lecture Notes in Mathematics, Volume 699, New York, 1979 · Zbl 0414.53043
[25] Henkin, G. M., Iordan, A.: Regularity of on pseudoconcave compacts and applications. (see also Erratum: Asian J. Math. 7, (2003) No. 1, pp. 147–148) Asian J. Math. 4, 855–884 (2000) · Zbl 1077.32505
[26] Hörmander, L.: The Frobenius-Nirenberg theorem. Ark. Mat. 5, 425-432 (1965) · Zbl 0136.09104 · doi:10.1007/BF02591139
[27] Hörmander, L.: L2 estimates and existence theorems for the operator. Acta Math. 113, 89–152 (1965) · Zbl 0158.11002
[28] Hörmander, L.: An introduction to complex analysis in several variables. 3rd ed. North Holland, Amsterdam, 1990 · Zbl 0685.32001
[29] Hörmander, L.: Hypoelliptic second-order differential equations. Acta Math. 119, 147–171 (1967) · Zbl 0156.10701 · doi:10.1007/BF02392081
[30] Howard, A., Smyth, B., Wu, H.: On compact Kähler manifolds of nonnegative bisectional curvature. I Acta Math. 147 51–56 (1981) · Zbl 0473.53055
[31] Iordan, A.: On the non-existence of smooth Levi-flat hypersurfaces in will appear in the ”Proceedings of the Memorial Conference of Kiyoshi Oka’s Centenial Birthday on Complex Analysis in Several Variables”, Kyoto, Nara 2001
[32] Kobayashi, S., Wu, H.: Complex differential geometry, Series (DMV Seminar; Bd. 3). Contents: Topics in complex differential geometry by S. Kobayashi and C. Horst and Function theory on noncompact Kähler manifolds by Hung-hsi Wu, Birkhäuser, Basel, Boston, 1983
[33] Kobayashi, S., Nomizu, K.: Foundations of differential geometry, volume II John Wiley & Sons New York, 1969 · Zbl 0175.48504
[34] Kohn, J.J.: Global regularity for on weakly pseudoconvex manifolds. Trans. Amer. Math. Soc. 181, 273–292 (1973) · Zbl 0276.35071
[35] Kohn, J. J.: Quantitative estimates for global regularity. In book Analysis and geometry in several complex variables: proceedings of the 40th Taniguchi Symposium (Katata, 1997, edited by Gen Komatsu, Masatake Kuranishi) Trends Math. Birkhäuser, Boston, MA, 1999, pp. 97–128
[36] Kohn, J. J., Rossi, H.: On the extension of holomorphic functions from the boundary of a complex manifold. Ann. Math. 81, 451–472 (1965) · Zbl 0166.33802 · doi:10.2307/1970624
[37] Lins Neto, A.: A note on projective Levi flats and minimal sets of algebraic foliations. Ann. Inst. Fourier 49, 1369–1385 (1999) · Zbl 0963.32022
[38] Lions, J.-L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, Volume I, Springer-Verlag, New York, 1972 · Zbl 0223.35039
[39] Michel, J., Shaw, M.-C.: Subelliptic estimates for the -Neumann operator on piecewise smooth strictly pseudoconvex domains. Duke Math. J. 93, 115–128 (1998) · Zbl 0953.32027
[40] Michel, J., Shaw, M.-C.: The -Neumann operator on Lipschitz pseudoconvex domains with plurisubharmonic defining functions. Duke Math. J. 108, 421–448 (2001) · Zbl 1020.32030
[41] Mok, N.: Metric rigidity theorems on Hermitian locally symmetric manifolds. Series in Pure Mathematics, 6, World Scientific Publishing Co., Inc. Teaneck, NJ, USA 1989 · Zbl 0912.32026
[42] Nirenberg, L.: A complex Frobenius theorem Seminar on analytic functions I, Princeton, 1957, pp. 172–189
[43] Ohsawa, T.: A question on the 1-convex boundary points. In the book Analysis and geometry in several complex variables: proceedings of the 40th Taniguchi Symposium (Katata, 1997, edited by Gen Komatsu, Masatake Kuranishi) Trends in Math., Boston, Birkhäuser, 1999, pp. 239–252
[44] Ohsawa, T., Sibony, N.: Bounded P.S.H Functions and Pseudoconvexity in Kähler Manifolds. Nagoya Math. J.149, 1–8 (1998) · Zbl 0911.32027
[45] Petersen, P.: Riemannian geometry, Graduate Texts in Mathematics, 171 Springer-Verlag, New York, 1998
[46] Range, R. M.: A remark on bounded strictly plurisubharmonic exhaustion functions. Proc. Amer. Math. Soc. 81, 220–222 (1981) · Zbl 0486.32009 · doi:10.1090/S0002-9939-1981-0593461-7
[47] Shaw, M.-C.: Global solvability and regularity for on an annulus between two weakly pseudoconvex domains. Trans. Amer. Math. Soc. 291, 255–267 (1985) · Zbl 0594.35010
[48] Shaw, M.-C.: L2 estimates and existence theorems for the tangential Cauchy-Riemann complex. Invent. Math. 82, 133–150 (1985) · Zbl 0581.35057 · doi:10.1007/BF01394783
[49] Shaw, M.-C.: L2 estimates and existence theorems for b on Lipschitz boundaries. Math. Zeit. 244, 91–123 (2003) · Zbl 1039.32049
[50] Shaw, M.-C., Wang, L.: Hölder and Lp estimates for on CR manifolds of arbitrary codimension. Preprint, submitted
[51] Siu, Y.-T.: Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems. J. Differential Geom. 17, 55–138 (1982) · Zbl 0497.32025
[52] Siu, Y.-T.: Nonexistence of smooth Levi-flat hypersurfaces in complex projective spaces of dimension . Ann. Math. 151, 1217–1243 (2000) · Zbl 0980.53065 · doi:10.2307/121133
[53] Siu, Y.-T.: -regularity for weakly pseudoconvex domains in hermitian symmetric spaces with respect to invariant metrics. Ann. Math.156, 595–621 (2002) · Zbl 1030.53071
[54] Suzuki, O.: pseudoconvex domains on a Kähler manifold with positive holomorphic bisectional curvature. Publ. Res. Inst. Math. Sci. Kyoto Univ., Japan 12, 191–214 (1976/77)
[55] Takegoshi, K.: Representation theorems of cohomology on weakly 1-complete manifolds. Publ. Res. Inst. Math. Sci. 18(2), 131–186 (September 1982) · Zbl 0509.32018
[56] Takeuchi, A.: Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif. J. Math. Soc. Japan 16, 159–181 (1964) · Zbl 0139.33602 · doi:10.2969/jmsj/01620109
[57] Wu, H.-H.: The Bochner technique in differential geometry. Harwood Academic, New York, 1988 · Zbl 0875.58014
[58] Zheng, F.: Complex Differential Geometry. American Math. Society-International Press, Studies in Advanced Mathematics, Volume 18, Providence R.I. 2000 · Zbl 0984.53002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.