×

Geometry of measures in real dimensions via Hölder parameterizations. (English) Zbl 1481.28006

If \(m, n\) are integers, \(1\leqslant m\leqslant n-1\) and \(s\in[m,n]\) (not necessarily an integer), then the \((m/s)\)-Hölder cube is the image of a Hölder continuous map \(f:[0,1]^m \to \mathbb{R}^n\) with exponent \((m/s)\). If \(m=1\), then the \((1/s)\)-Hölder cube is called a \((1/s)\)-Hölder curve. The symbol \(\mu \ \llcorner\ E\) means the restriction of the measure \(\mu\) to the set \(E \subset \mathbb{R}^n\), which means that \(\mu \ \llcorner\ E (F) = \mu (E \cap F)\) for all \(F \subset \mathbb{R}^n\). The main results of the paper are the following theorems:
Theorem A (Behavior at extreme lower densities). Let \(\mu\) be a Radon measure on \(\mathbb{R}^n\) and let \(s \in [1,n)\). Then the measure \[\underline{\mu}^s_0 :=\mu \ \llcorner\ \Bigg\{ x \in \mathbb{R}^n : \liminf_{r \downarrow 0} \frac{\mu(B(x,r))}{r^2} = 0\Bigg\}\] is singular to \((1/s)\)-Hölder curves. At the other extreme, the measure \[ \underline{\mu}^s_{\infty} := \mu\ \llcorner\ \Bigg\{ x \in \mathbb{R}^n : \int^1_0 \frac{r^s}{\mu(B(x,r))} \frac{dr}{r} < \infty \text{ and } \limsup_{r \downarrow 0} \frac{\mu(B(x, 2r))}{\mu(B(x,r))} < \infty \Bigg\} \] is carried by \((1/s)\)-Hölder curves, where “\(\underline{\mu}^s_{\infty}\) is carried by \((1/s)\)-Hölder curves” means that there exist countably many \((1/s)\)-Hölder curves \(\Gamma_i \subset \mathbb{R}^n\) such that \(\underline{\mu}^s_{\infty} (\mathbb{R}^n \setminus \bigcup_i \Gamma_i) = 0\) and “\(\underline{\mu}^s_0\) is singular to \((1/s)\)-Hölder curves” means that \(\mu (\Gamma) = 0\) for every \((1/s)\)-Hölder curve \(\Gamma \subset \mathbb{R}^n\).
Theorem B (Improvement to bi-Lipschitz curves). Let \(\mu\) be a Radon measure on \(\mathbb{R}^n\) and let \(t \in [0,1)\). Then the measure \(\mu^t_+\) is carried by bi-Lipschitz curves.
Theorem C (Improvement to \((m/s)\)-Hölder \(m\)-cubes). Let \(\mu\) be a Radon measure on \(\mathbb{R}^n\), let \(1 \leqslant m \leqslant n-1\) be an integer, let \(s \in [m,n)\), and let \(t \in [0,s)\). Then the measure \(\mu^t_+\) is carried by \((m/s)\)-Hölder \(m\)-cubes.
Here \[\mu^t_+ := \mu \ \llcorner\ \Bigg\{ x \in \mathbb{R}^n : 0 < \liminf_{r \downarrow 0} \frac{\mu (B(x,r))}{r^t} \leqslant \limsup_{r \downarrow 0} \frac{\mu (B(x,r))}{r^t} < \infty \Bigg\}.\]
To prove these theorems the authors consider (in Part I of the paper) several parametrization theorems concerning Hölder or bi-Lipschitz parametrizations of sets witch small Assouad dimension (Theorems 3.2 and 3.4). The definition and survey of the properties of this kind of dimension one can find in [P. Assouad, Bull. Soc. Math. Fr. 111, 429–448 (1983; Zbl 0597.54015)] or [J. Luukkainen, J. Korean Math. Soc. 35, No. 1, 23–76 (1998; Zbl 0893.54029)].
In Part II there are proofs of Theorems A, B and C. The proof of the first assertion of Theorem A uses the relationship between lower Hausdorff densities and packing measures. Theorems B and C follow from the connection between Hausdorff densities and Assouad dimension.
Similar considerations were carried out by M. A. Martín and P. Mattila from 1988 to 2000 for Hausdorff measures \(\mathcal{H}^s\) with \(0 < s < n\) not necessarily an integer [Trans. Am. Math. Soc. 305, No. 1, 293–315 (1988; Zbl 0643.28009); Math. Proc. Camb. Philos. Soc. 114, No. 1, 37–42 (1993; Zbl 0783.28005); Proc. Am. Math. Soc. 128, No. 9, 2641–2648 (2000; Zbl 0951.28005)]. The investigation of the measure – theoretic geometry of Euclidean sets of integral dimension goes back to A. S. Besicovitch in the 1920s and 1930s [Math. Ann. 98, 422–464 (1927; JFM 53.0175.04); Math. Ann. 115, 296–329 (1938; Zbl 0018.11302)].

MSC:

28A75 Length, area, volume, other geometric measure theory
26A16 Lipschitz (Hölder) classes
30L05 Geometric embeddings of metric spaces

References:

[1] Alberti, G., Ottolini, M.: On the structure of continua with finite length and Golab’s semicontinuity theorem. Nonlinear Anal. 153, 35-55 (2017) · Zbl 1359.28001 · doi:10.1016/j.na.2016.10.012
[2] Azzam, J., Schul, R.: An analyst’s traveling salesman theorem for sets of dimension larger than one. Math. Ann. 370(3-4), 1389-1476 (2018) · Zbl 1388.28005 · doi:10.1007/s00208-017-1609-0
[3] Assouad, P.: Plongements lipschitziens dans \[{ R}^nRn\]. Bull. Soc. Math. France 111(4), 429-448 (1983) · Zbl 0597.54015 · doi:10.24033/bsmf.1997
[4] Azzam, J., Tolsa, X.: Characterization of \[n\] n-rectifiability in terms of Jones’ square function: Part II. Geom. Funct. Anal. 25(5), 1371-1412 (2015) · Zbl 1334.28010 · doi:10.1007/s00039-015-0334-7
[5] Besicovitch, A.S.: On the fundamental geometrical properties of linearly measurable plane sets of points. Math. Ann. 98(1), 422-464 (1928) · JFM 53.0175.04 · doi:10.1007/BF01451603
[6] Besicovitch, A.S.: On the fundamental geometrical properties of linearly measurable plane sets of points (II). Math. Ann. 115(1), 296-329 (1938) · Zbl 0018.11302 · doi:10.1007/BF01448943
[7] Bonk, M., Heinonen, J.: Smooth quasiregular mappings with branching. Publ. Math. Inst. Hautes Études Sci. 100(1), 153-170 (2004) · Zbl 1063.30021 · doi:10.1007/s10240-004-0024-8
[8] Badger, M., Schul, R.: Multiscale analysis of 1-rectifiable measures: necessary conditions. Math. Ann. 361(3-4), 1055-1072 (2015) · Zbl 1314.28003 · doi:10.1007/s00208-014-1104-9
[9] Badger, M., Schul, R.: Two sufficient conditions for rectifiable measures. Proc. Am. Math. Soc. 144(6), 2445-2454 (2016) · Zbl 1345.28004 · doi:10.1090/proc/12881
[10] Badger, M., Schul, R.: Multiscale analysis of 1-rectifiable measures II: characterizations. Anal. Geom. Metr. Spaces 5, 1-39 (2017) · Zbl 1360.28004 · doi:10.1515/agms-2017-0001
[11] David, G., Semmes, S.: Singular integrals and rectifiable sets in \[{ R}^nRn\]: beyond Lipschitz graphs, Astérisque, no. 193 (1991) · Zbl 0743.49018
[12] David, G., Semmes, S.: Analysis Of and On Uniformly Rectifiable Sets. Mathematical Surveys and Monographs, vol. 38. American Mathematical Society, Providence (1993) · Zbl 0832.42008
[13] David, G., Semmes, S.: Fractured Fractals and Broken Dreams: Self-Similar Geometry Through Metric and Measure. Oxford Lecture Series in Mathematics and Its Applications, vol. 7. The Clarendon Press, Oxford University Press, New York (1997) · Zbl 0887.54001
[14] David, G., Toro, T.: Reifenberg flat metric spaces, snowballs, and embeddings. Math. Ann. 315(4), 641-710 (1999) · Zbl 0944.53004 · doi:10.1007/s002080050332
[15] David, G., Toro, T.: Reifenberg parameterizations for sets with holes. Mem. Am. Math. Soc. 215(1012), 6+102 (2012) · Zbl 1236.28002
[16] Edelen, N., Naber, A., Valtorta, D.: Quantitative Reifenberg theorem for measures (2016). arXiv:1612.08052 · Zbl 1420.42017
[17] Falconer, K.J.: The Geometry of Fractal Sets. Cambridge Tracts in Mathematics, vol. 85. Cambridge University Press, Cambridge (1986) · Zbl 0587.28004
[18] Federer, H.: The \[(\varphi, k)\](φ,k) rectifiable subsets of \[n\] n-space. Trans. Am. Soc. 62, 114-192 (1947) · Zbl 0032.14902
[19] Ghinassi, S.: A sufficient condition for \[C^{1,\alpha }\] C1,α parametrization (2017). arXiv:1709.06015 · Zbl 1447.28002
[20] Garnett, J., Killip, R., Schul, R.: A doubling measure on \[\mathbb{R}^d\] Rd can charge a rectifiable curve. Proc. Am. Math. Soc. 138(5), 1673-1679 (2010) · Zbl 1196.28007 · doi:10.1090/S0002-9939-10-10234-2
[21] Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer, New York (2001) · Zbl 0985.46008 · doi:10.1007/978-1-4613-0131-8
[22] Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713-747 (1981) · Zbl 0598.28011 · doi:10.1512/iumj.1981.30.30055
[23] Jones, P.W.: Rectifiable sets and the traveling salesman problem. Invent. Math. 102(1), 1-15 (1990) · Zbl 0731.30018 · doi:10.1007/BF01233418
[24] Kechris, A.: Classical Descriptive Set Theory. Graduate Texts in Mathematics, vol. 156. Springer, New York (1995) · Zbl 0819.04002
[25] Luukkainen, J.: Assouad dimension: antifractal metrization, porous sets, and homogeneous measures. J. Korean Math. Soc. 35(1), 23-76 (1998) · Zbl 0893.54029
[26] MacManus, P.: Catching sets with quasicircles. Rev. Mat. Iberoamericana 15(2), 267-277 (1999) · Zbl 0944.30013 · doi:10.4171/RMI/256
[27] Marstrand, J.M.: Some fundamental geometrical properties of plane sets of fractional dimensions. Proc. Lond. Math. Soc. 4, 257-302 (1954) · Zbl 0056.05504 · doi:10.1112/plms/s3-4.1.257
[28] Marstrand, J.M.: Hausdorff two-dimensional measure in \[33\]-space. Proc. Lond. Math. Soc. 11, 91-108 (1961) · Zbl 0109.03504 · doi:10.1112/plms/s3-11.1.91
[29] Mattila, P.: Hausdorff \[m\] m regular and rectifiable sets in \[n\] n-space. Trans. Am. Math. Soc. 205, 263-274 (1975) · Zbl 0274.28004
[30] Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1995) · Zbl 0819.28004 · doi:10.1017/CBO9780511623813
[31] Martín, M.Á., Mattila, p: \[k\] k-dimensional regularity classifications for \[s\] s-fractals. Trans. Am. Math. Soc. 305(1), 293-315 (1988) · Zbl 0643.28009 · doi:10.2307/2001054
[32] Martín, M.A., Mattila, P.: Hausdorff measures, Hölder continuous maps and self-similar fractals. Math. Proc. Cambridge Philos. Soc. 114(1), 37-42 (1993) · Zbl 0783.28005 · doi:10.1017/S0305004100071383
[33] Martín, M.A., Mattila, P.: On the parametrization of self-similar and other fractal sets. Proc. Am. Math. Soc. 128(9), 2641-2648 (2000) · Zbl 0951.28005 · doi:10.1090/S0002-9939-00-05354-5
[34] Morse, A.P., Randolph, J.F.: The \[\phi\] ϕ rectifiable subsets of the plane. Trans. Am. Math. Soc. 55, 236-305 (1944) · Zbl 0060.14002 · doi:10.1090/S0002-9947-1944-0009974-4
[35] Mackay, J.M., Tyson, J.T.: Conformal Dimension: Theory and Application. University Lecture Series, vol. 54. American Mathematical Society, Providence (2010) · Zbl 1201.30002
[36] Okikiolu, K.: Characterization of subsets of rectifiable curves in \[{ R}^nRn\]. J. Lond. Math. Soc. 46(2), 336-348 (1992) · Zbl 0758.57020 · doi:10.1112/jlms/s2-46.2.336
[37] Preiss, D.: Geometry of measures in \[{ R}^nRn\]: distribution, rectifiability, and densities. Ann. Math. 125(3), 537-643 (1987) · Zbl 0627.28008 · doi:10.2307/1971410
[38] Rushing, T.B.: Topological Embeddings. Pure and Applied Mathematics, vol. 52. Academic Press, New York (1973) · Zbl 0295.57003
[39] Romney, M., Vellis, V.: Bi-Lipschitz embedding of the generalized Grushin plane into Euclidean spaces. Math. Res. Lett. (2017) · Zbl 1385.53019
[40] Semmes, S.: Where the buffalo roam: infinite processes and infinite complexity (2003). arXiv:math/0302308 [math.CA]
[41] Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970) · Zbl 0207.13501
[42] Stein, E.M., Shakarchi, R.: Real Analysis, Measure Theory, Integration, and Hilbert Spaces. Princeton Lectures in Analysis, vol. 3. Princeton University Press, Princeton (2005) · Zbl 1081.28001
[43] Stong, R.: Mapping \[\mathbf{Z}^rZr\] into \[\mathbf{Z}^s\] Zs with maximal contraction. Discrete Comput. Geom. 20(1), 131-138 (1998) · Zbl 0913.28008 · doi:10.1007/PL00009375
[44] Tolsa, X., Toro, T.: Rectifiability via a square function and Preiss’ theorem. Int. Math. Res. Not. (13), 4638-4662 (2015) · Zbl 1318.28014
[45] Väisälä, J.: Quasisymmetric embeddings in Euclidean spaces. Trans. Am. Math. Soc. 264(1), 191-204 (1981) · Zbl 0456.30018 · doi:10.2307/1998419
[46] Vellis, V.: Extension properties of planar uniform domains (2016). arXiv:1609.08763 · Zbl 1390.30020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.