×

Dynamic event-triggered \(H_\infty\) control on nonlinear asynchronous switched system with mixed time-varying delays. (English) Zbl 1480.93276

Summary: This paper is concerned with the \(H_\infty\) control problem of the nonlinear asynchronous switched system in the presence of mixed time-varying delays and exogenous disturbance by employing the controller mode-dependent dynamic event-triggered strategy, merging switching signal approach and average dwell time scheme. Firstly, instead of using the static event-triggered scheme, a novel Zeno-free controller mode-dependent dynamic event-triggered strategy is designed to reduce the unnecessary costs of the system operation. Then, the dynamic event-triggered asynchronous control behaviours between the subsystems and the corresponding controllers are studied. Some suitable sufficient conditions are derived by applying the merging switching signal approach and multiple Lyapunov functional method to guarantee the \(H_\infty\) performance of the nonlinear asynchronous delayed switched system. Finally, the feasibility and the application of the obtained results are illustrated by a numerical example and a practical example.

MSC:

93C65 Discrete event control/observation systems
93B36 \(H^\infty\)-control
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93C10 Nonlinear systems in control theory
93C43 Delay control/observation systems
Full Text: DOI

References:

[1] Liberzon, D., Switching in Systems and Control (2003), Springer: Springer New York, NY, USA · Zbl 1036.93001
[2] Li, Z.; Wen, C.; Soh, Y., Switched controllers and their applications in bilinear systems, Automatica, 37, 3, 477-481 (2001) · Zbl 0978.93060
[3] Donkers, M.; Heemels, W.; De Wouw, N. V.; Hetel, L., Stability analysis of networked control systems using a switched linear systems approach, IEEE Trans. Autom. Control, 56, 9, 2101-2115 (2011) · Zbl 1368.93465
[4] Baldi, S.; Yuan, S.; Endel, P.; Holub, O., Dual estimation: constructing building energy models from data sampled at low rate, Appl. Energy, 169, 81-92 (2016)
[5] Liang, J.; Wu, B.; Liu, L.; Wang, Y.-E.; Li, C., Finite-time stability and finite-time boundedness of fractional order switched systems, Trans. Inst. Meas. Control, 41, 12, 3364-3371 (2019)
[6] Liang, J.; Wu, B.; Wang, Y.-E.; Niu, B.; Xie, X., Input-output finite-time stability of fractional-order positive switched systems, Circuits, Syst., Signal Process., 38, 4, 1619-1638 (2019)
[7] Wang, Y.-E.; Karimi, H. R.; Wu, D., Conditions for the stability of switched systems containing unstable subsystems, IEEE Trans. Circuits Syst. II, 66, 4, 617-621 (2019)
[8] Chen, H.; Liu, X.; Liu, X.; Zhong, S., A hybrid proportional impulsive plus integral robust control algorithm for \(H_\infty\) stabilization, IEEE Trans. Syst., Man, Cybern., 50, 12, 5211-5220 (2020)
[9] Wang, B.; Cheng, J.; Al-Barakati, A.; Fardoun, H. M., A mismatched membership function approach to sampled-data stabilization for T-S fuzzy systems with time-varying delayed signals, Signal Process., 140, 161-170 (2017)
[10] Cheng, J.; Park, J. H.; Liu, Y.; Liu, Z.; Tang, L., Finite-time \(H_\infty\) fuzzy control of nonlinear markovian jump delayed systems with partly uncertain transition descriptions, Fuzzy Sets Syst., 314, 99-115 (2017) · Zbl 1368.93147
[11] Chen, H.; Shi, K.; Zhong, S.; Liu, X., Error state convergence on master-slave generalized uncertain neural networks using robust nonlinear \(H_\infty\) control theory, IEEE Trans. Syst., Man, Cybern., 50, 6, 2042-2055 (2020)
[12] Zhang, X.-M.; Han, Q.-L.; Seuret, A.; Gouaisbaut, F.; He, Y., Overview of recent advances in stability of linear systems with time-varying delays, IET Control Theory Appl., 13, 1, 1-16 (2019) · Zbl 1434.93034
[13] Zhang, D.; Han, Q.-L.; Zhang, X. M., Network-based modeling and proportional-integral control for direct-drive-wheel systems in wireless network environments, IEEE Trans. Cybern., 50, 6, 2462-2474 (2020)
[14] J. Chen, X.-M. Zhang, J.H. Park, S. Xu, Improved stability criteria for delayed neural networks using a quadratic function negative-definiteness approach, IEEE Trans. Neural Netw. Learn. Syst. doi:10.1109/TNNLS.2020.3042307.
[15] Zhang, X.-M.; Han, Q.-L.; Ge, X., Novel stability criteria for linear time-delay systems using Lyapunov-Krasovskii functionals with a cubic polynomial on time-varying delay, IEEE/CAA J. Autom. Sin., 8, 1, 77-85 (2021)
[16] Gao, J.; Wang, X. T., Asynchronous \(H_\infty\) control of switched systems with mode-dependent average dwell time, Circuits, Syst., Signal Process., 36, 11, 4401-4422 (2017) · Zbl 1373.93106
[17] Yang, D.; Li, X.; Qiu, J., Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Anal., 32, 294-305 (2019) · Zbl 1425.93149
[18] Wang, Y.; Liu, H.; Li, X., A novel method for stability analysis of time-varying delay systems, IEEE Trans. Autom. Control, 66, 3, 1422-1428 (2021) · Zbl 1536.93746
[19] Sun, Z.; Ge, S. S., Stability Theory of Switched Dynamical Systems (2011), Springer Science & Business Media · Zbl 1298.93006
[20] Wang, B.; Cheng, J.; Zhan, J., A sojourn probability approach to fuzzy-model-based reliable control for switched systems with mode-dependent time-varying delays, Nonlinear Anal., 26, 239-253 (2017) · Zbl 1373.93195
[21] Wang, H.; Liu, P. X.; Niu, B., Robust fuzzy adaptive tracking control for nonaffine stochastic nonlinear switching systems, IEEE Trans. Cybern., 48, 8, 2462-2471 (2018)
[22] Wang, H.; Liu, P. X.; Shi, P., Observer-based fuzzy adaptive output-feedback control of stochastic nonlinear multiple time-delay systems, IEEE Trans. Cybern., 47, 9, 2568-2578 (2017)
[23] Li, T.-F.; Fu, J.; Ma, Z., Improved event-triggered control for a class of continuous-time switched linear systems, IET Control Theory Appl., 12, 7, 1000-1005 (2018)
[24] Feng, N.; Wu, B.; Liu, L.; Wang, Y. E., Exponential stability of output-based event-triggered control for switched singular systems, Asian J. Control, 22, 4, 1513-1521 (2020) · Zbl 07872686
[25] L. Zhou, C. Liu, R. Pan, X. Xiao, Event-triggered synchronization of switched nonlinear system based on sampled measurements, IEEE Trans. Cybern. 10.1109/TCYB.2020.3009920
[26] Liu, Y.; Zhi, H.; Wei, J.; Zhu, X.; Zhu, Q., Event-triggered control for linear continuous switched singular systems, Appl. Math. Comput., 374, 125038 (2020) · Zbl 1433.93077
[27] Zhang, H.; Qiu, Z.; Cao, J.; Abdel-Aty, M.; Xiong, L., Event-triggered synchronization for neutral-type semi-markovian neural networks with partial mode-dependent time-varying delays, IEEE Trans. Neural Netw. Learn. Syst., 31, 11, 4437-4450 (2020)
[28] Zhang, L.; Gao, H., Asynchronously switched control of switched linear systems with average dwell time, Automatica, 46, 5, 953-958 (2010) · Zbl 1191.93068
[29] Wang, Y.-E.; Sun, X.-M.; Zhao, J., Asynchronous \(H_\infty\) control of switched delay systems with average dwell time, J. Frankl. Inst., 349, 10, 3159-3169 (2012) · Zbl 1255.93049
[30] He, H.; Gao, X.; Qi, W., Asynchronous control of time-delayed switched systems with actuator saturation via anti-windup design, Optim. Control Appl. Methods, 39, 1, 1-18 (2018) · Zbl 1390.93283
[31] Li, T.-F.; Fu, J.; Deng, F.; Chai, T., Stabilization of switched linear neutral systems: an event-triggered sampling control scheme, IEEE Trans. Autom. Control, 63, 10, 3537-3544 (2018) · Zbl 1423.93242
[32] Li, T.-F.; Wang, H., Asynchronous switching control for switched delay systems induced by sampling mechanism, IEEE Access, 6, 10 787-10 794 (2018)
[33] Girard, A., Dynamic triggering mechanisms for event-triggered control, IEEE Trans. Autom. Control, 60, 7, 1992-1997 (2015) · Zbl 1360.93423
[34] Wang, Y.; Jia, Z.; Zuo, Z., Dynamic event-triggered and self-triggered output feedback control of networked switched linear systems, Neurocomputing, 314, 39-47 (2018)
[35] Ma, Y.; Li, Z.; Zhao, J., \(H_\infty\) control for switched systems based on dynamic event-triggered strategy and quantization under state-dependent switching, IEEE Trans. Circuits Syst. I, 67, 9, 3175-3186 (2020) · Zbl 1468.93069
[36] Ren, H.; Zong, G.; Li, T., Event-triggered finite-time control for networked switched linear systems with asynchronous switching, IEEE Trans. Syst., Man, Cybern., 48, 11, 1874-1884 (2018)
[37] Wang, Y.-E.; Wu, D.; Niu, B., Improved conditions for event-triggered control of switched linear systems, IET Control Theory Appl., 14, 8, 1104-1110 (2020) · Zbl 07907182
[38] Hespanha, J. P.; Morse, A. S., Stability of switched systems with average dwell-time, Proceedings of the 38th IEEE Conference on Decision and Control, vol. 3, 2655-2660 (1999), Phoenix: Phoenix AZ, USA
[39] Sun, X.-M.; Zhao, J.; Hill, D. J., Stability and \(L_2\)-gain analysis for switched delay systems: a delay-dependent method, Automatica, 42, 10, 1769-1774 (2006) · Zbl 1114.93086
[40] Vu, L.; Morgansen, K. A., Stability of time-delay feedback switched linear systems, IEEE Trans. Autom. Control, 55, 10, 2385-2390 (2010) · Zbl 1368.93573
[41] Gu, K.; Chen, J.; Kharitonov, V. L., Stability of Time-Delay Systems (2003), Springer Science & Business Media · Zbl 1039.34067
[42] Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory (1994), SIAM: SIAM Philadelphia, PA, USA · Zbl 0816.93004
[43] Zhao, Q.; Sun, J.; Bai, Y., Dynamic event-triggered control for nonlinear systems: a small-gain approach, J. Syst. Sci. Complex., 33, 4, 930-943 (2020) · Zbl 1455.93121
[44] Li, T.-F.; Fu, J., Event-triggered control of switched linear systems, J. Frankl. Inst., 354, 15, 6451-6462 (2017) · Zbl 1373.93216
[45] Liu, D.; Yang, G. H., Dynamic event-triggered control for linear time-invariant systems with \(L_2\)-gain performance, Int. J. Robust Nonlinear Control, 29, 2, 507-518 (2019) · Zbl 1411.93116
[46] Huong, D. C.; Huynh, V. T.; Trinh, H., Dynamic event-triggered state observers for a class of nonlinear systems with time delays and disturbances, IEEE Trans. Circuits Syst. II, 67, 12, 3457-3461 (2020)
[47] Wang, X.; Fei, Z.; Wang, T.; Yang, L., Dynamic event-triggered actuator fault estimation and accommodation for dynamical systems, Inf. Sci., 525, 119-133 (2020) · Zbl 1461.93321
[48] Peng, C.; Sun, H., Switching-like event-triggered control for networked control systems under malicious denial of service attacks, IEEE Trans. Autom. Control, 65, 9, 3943-3949 (2020) · Zbl 1533.93493
[49] Liu, J.; Wu, Z.-G.; Yue, D.; Park, J. H., Stabilization of networked control systems with hybrid-driven mechanism and probabilistic cyber attacks, IEEE Trans. Syst., Man, Cybern., 51, 2, 943-953 (2021)
[50] Tian, E.; Peng, C., Memory-based event-triggering \(H_\infty\) load frequency control for power systems under deception attacks, IEEE Trans. Cybern., 50, 11, 4610-4618 (2020)
[51] Liu, J.; Yin, T.; Yue, D.; Karimi, H. R.; Cao, J., Event-based secure leader-following consensus control for multiagent systems with multiple cyber attacks, IEEE Trans. Cybern., 51, 1, 162-173 (2021)
[52] Castelan, E. B.; Tarbouriech, S.; Queinnec, I., Control design for a class of nonlinear continuous-time systems, Automatica, 44, 8, 2034-2039 (2008) · Zbl 1283.93123
[53] Hu, S.; Yue, D.; Cheng, Z.; Tian, E.; Xie, X.; Chen, X., Co-design of dynamic event-triggered communication scheme and resilient observer-based control under aperiodic dos attacks, IEEE Trans. Cybern., 51, 9, 4591-4601 (2021)
[54] Ge, X.; Xiao, S.; Han, Q.-L.; Zhang, X.-M.; Ding, D., Dynamic event-triggered scheduling and platooning control co-design for automated vehicles over vehicular ad-hoc networks, IEEE/CAA J. Autom. Sin., 1-16 (2021)
[55] Lee, C.; Leitmann, G., Continuous feedback guaranteeing uniform ultimate boundedness for uncertain linear delay systems: an application to river pollution control, Comput. Math. Appl., 16, 10-11, 929-938 (1988) · Zbl 0673.93052
[56] Zheng, F.; Wang, Q.-G.; Lee, T. H., Adaptive robust control of uncertain time delay systems, Automatica, 41, 8, 1375-1383 (2005) · Zbl 1086.93029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.