×

Nonlinear dynamic responses of sandwich functionally graded porous cylindrical shells embedded in elastic media under 1:1 internal resonance. (English) Zbl 1480.74117

Summary: In this article, the nonlinear dynamic responses of sandwich functionally graded (FG) porous cylindrical shell embedded in elastic media are investigated. The shell studied here consists of three layers, of which the outer and inner skins are made of solid metal, while the core is FG porous metal foam. Partial differential equations are derived by utilizing the improved Donnell’s nonlinear shell theory and Hamilton’s principle. Afterwards, the Galerkin method is used to transform the governing equations into nonlinear ordinary differential equations, and an approximate analytical solution is obtained by using the multiple scales method. The effects of various system parameters, specifically, the radial load, core thickness, foam type, foam coefficient, structure damping, and Winkler-Pasternak foundation parameters on nonlinear internal resonance of the sandwich FG porous thin shells are evaluated.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K25 Shells
74E30 Composite and mixture properties
74E05 Inhomogeneity in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74H15 Numerical approximation of solutions of dynamical problems in solid mechanics

References:

[1] Spoerke, E. D.; Murray, N. G.; Li, H.; Brinson, L. C.; Stupp, S. I., A bioactive titanium foam scaffold for bone repair, Acta Biomaterialia, 1, 523-533 (2005) · doi:10.1016/j.actbio.2005.04.005
[2] Cao, L.; Lin, Y.; Lu, F.; Chen, R.; Zhang, Z.; Li, Y., Experimental study on the shock absorption performance of combined aluminium honeycombs under impact loading, Shock and Vibration, 2015, 1-8 (2015)
[3] Li, M.; Deng, Z.; Liu, R.; Guo, H., Crashworthiness design optimisation of metal honeycomb energy absorber used in lunar lander, International Journal of Crashworthiness, 16, 411-419 (2011) · doi:10.1080/13588265.2011.596677
[4] Tan, W. C.; Saw, L. H.; Xuan, H. S.; Cai, Z.; Thiam, M. C., Overview of porous media/metal foam application in fuel cells and solar power systems, Renewable and Sustainable Energy Reviews, 96, 181-197 (2018) · doi:10.1016/j.rser.2018.07.032
[5] Choi, K.; Kim, J.; Ko, A.; Myung, C. L.; Park, S.; Lee, J., Size-resolved engine exhaust aerosol characteristics in a metal foam particulate filter for GDI light-duty vehicle, Journal of Aerosol science, 57, 1-13 (2013) · doi:10.1016/j.jaerosci.2012.11.002
[6] Kim, S.; Lee, C. W., A review on manufacturing and application of open-cell metal foam, Procedia Materials Science, 4, 305-309 (2014) · doi:10.1016/j.mspro.2014.07.562
[7] Breslavsky, I. D.; Amabili, M., Nonlinear vibrations of a circular cylindrical shell with multiple internal resonances under multi-harmonic excitation, Nonlinear Dynamics, 93, 53-62 (2018) · doi:10.1007/s11071-017-3983-2
[8] Yang, S. W.; Zhang, W.; Mao, J. J., Nonlinear vibrations of carbon fiber reinforced polymer laminated cylindrical shell under non-normal boundary conditions with 1: 2 internal resonance, European Journal of Mechanics-A/Solids, 74, 317-336 (2019) · Zbl 1406.74333 · doi:10.1016/j.euromechsol.2018.11.014
[9] Zhang, Y.; Liu, J.; Wen, B., Nonlinear dynamical responses of rotary cylindrical shells with internal resonance, Acta Mechanica Solida Sinica, 32, 186-200 (2019) · doi:10.1007/s10338-019-00080-z
[10] Rodrigues, L.; Silva, F. M A.; Gonçalves, P. B., Influence of initial geometric imperfections on the 1:1:1:1 internal resonances and nonlinear vibrations of thin-walled cylindrical shells, Thin-Walled Structures, 151, 106730 (2020) · doi:10.1016/j.tws.2020.106730
[11] Liu, Y.; Qin, Z. Y.; Chu, F. L., Analytical study of the impact response of shear deformable sandwich cylindrical shell with a functionally graded porous core, Mechanics of Advanced Materials and Structures, 5, 1-10 (2020)
[12] Dong, Y. H.; Li, Y. H.; Chen, D.; Yang, J., Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion, Composites Part B: Engineering, 145, 1-13 (2018) · doi:10.1016/j.compositesb.2018.03.009
[13] Li, Q.; Di, W.; Chen, X.; Lei, L.; Yu, Y.; Wei, G., Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation, International Journal of Mechanical Sciences, 148, 596-610 (2018) · doi:10.1016/j.ijmecsci.2018.09.020
[14] Chen, D.; Yang, J.; Kitipornchai, S., Free and forced vibrations of shear deformable functionally graded porous beams, International Journal of Mechanical Sciences, 108-109, 14-22 (2016) · doi:10.1016/j.ijmecsci.2016.01.025
[15] Gao, W.; Qin, Z.; Chu, F., Wave propagation in functionally graded porous plates reinforced with graphene platelets, Aerospace Science and Technology, 102, 105860 (2020) · doi:10.1016/j.ast.2020.105860
[16] Liu, Y. F.; Wang, Y. Q., Thermo-electro-mechanical vibrations of porous functionally graded piezoelectric nanoshells, Nanomaterials, 9, 301 (2019) · doi:10.3390/nano9020301
[17] Magnucki, K.; Stasiewicz, P., Elastic buckling of a porous beam, Journal of Theoretical and Applied Mechanics, 42, 859-868 (2004) · Zbl 1195.74097
[18] Magnucka-Blandzi, E., Axi-symmetrical deflection and buckling of circular porous-cellular plate, Thin-Walled Structures, 46, 333-337 (2008) · doi:10.1016/j.tws.2007.06.006
[19] Jabbari, M.; Mojahedin, A.; Khorshidvand, A. R.; Eslami, M. R., Buckling analysis of a functionally graded thin circular plate made of saturated porous materials, Journal of Engineering Mechanics, 140, 287-295 (2013) · doi:10.1061/(ASCE)EM.1943-7889.0000663
[20] Chen, D.; Yang, J.; Kitipornchai, S., Elastic buckling and static bending of shear deformable functionally graded porous beam, Composite Structures, 133, 54-61 (2015) · doi:10.1016/j.compstruct.2015.07.052
[21] Amabili, M., Nonlinear Vibrations and Stability of Shells and Plates (2008), Cambridge: Cambridge University Press, Cambridge · Zbl 1154.74002 · doi:10.1017/CBO9780511619694
[22] Ding, H.; Huang, L.; Mao, X.; Chen, L., Primary resonance of traveling viscoelastic beam under internal resonance, Applied Mathematics and Mechanics, 38, 1-14 (2017) · Zbl 1358.74017 · doi:10.1007/s10483-016-2152-6
[23] Li, W.; Yang, X. D.; Zhang, W.; Ren, Y., Parametric amplification performance analysis of a vibrating beam micro-gyroscope with size-dependent and fringing field effects, Applied Mathematical Modelling, 91, 111-124 (2021) · Zbl 1481.74281 · doi:10.1016/j.apm.2020.09.051
[24] Liu, Y. F.; Ling, X.; Wang, Y. Q., Free and forced vibration analysis of 3D graphene foam truncated conical microshells, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43, 133 (2021) · doi:10.1007/s40430-021-02841-9
[25] Wang, Y.; Liu, Y.; Zu, J. W., Nonlinear free vibration of piezoelectric cylindrical nanoshells, Applied Mathematics and Mechanics, 40, 13-32 (2019) · Zbl 1416.92040 · doi:10.1007/s10483-019-2407-8
[26] Nayfeh, A. H.; Mook, D. T., Nonlinear Oscillations (1995), New Jersey: John Wiley & Sons, New Jersey · doi:10.1002/9783527617586
[27] Zhang, W.; Chen, J.; Zhang, Y. F.; Yang, X. D., Continuous model and nonlinear dynamic responses of circular mesh antenna clamped at one side, Engineering Structures, 151, 115-135 (2017) · doi:10.1016/j.engstruct.2017.08.013
[28] Qin, Z.; Chu, F.; Zu, J., Free vibrations of cylindrical shells with arbitrary boundary conditions: a comparison study, International Journal of Mechanical Sciences, 133, 91-99 (2017) · doi:10.1016/j.ijmecsci.2017.08.012
[29] Dhooge, A.; Govaerts, W.; Kuznetsov, Y. A.; Meijer, H. G E.; Sautois, B., New features of the software MatCont for bifurcation analysis of dynamical systems, Mathematical and Computer Modelling of Dynamical Systems, 14, 147-175 (2008) · Zbl 1158.34302 · doi:10.1080/13873950701742754
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.