×

Existence and multiplicity of solutions for a quasilinear equation involving the \(p(x)\)-Laplace operator. (English) Zbl 1479.35494

Summary: The purpose of this paper is to study the following nonlinear problem involving the \(p(x)\)-Laplace operator: \[\begin{cases}-\Delta_{p(x)}u=\lambda f(x,u)\qquad&\text{in }\Omega,\\ u>0&\text{in }\Omega,\\ u=0&\text{on }\partial\Omega,\end{cases}\tag{\(P_\lambda\)}\] where \(\Omega\subset \mathbb R^N\) (\(N\ge 2\)) is a bounded domain with \(C^2\)-boundary, \(\lambda\) is a positive parameter, \(p(x)\) and \(f(x,u)\) are assumed to satisfy the assumptions (H1)-(H4) in the introduction. We employ variational techniques in order to show the existence of a number \(\Lambda\in (0,\infty)\) such that problem (\(P_\lambda\)) admits two solutions for \(\lambda\in (0,\Lambda)\), one solution for \(\lambda=\Lambda\) and no solutions for \(\lambda>\Lambda\).

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35J25 Boundary value problems for second-order elliptic equations
35B09 Positive solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35J20 Variational methods for second-order elliptic equations
Full Text: DOI

References:

[1] DOI: 10.1007/s002050100117 · Zbl 0984.49020 · doi:10.1007/s002050100117
[2] Diening L. Theorical and numerical results for electrorheological fluids [Ph.D. thesis]. Germany: University of Freiburg; 2002. · Zbl 1022.76001
[3] DOI: 10.1016/j.jmaa.2004.10.028 · Zbl 1160.35399 · doi:10.1016/j.jmaa.2004.10.028
[4] DOI: 10.1016/S0362-546X(02)00150-5 · Zbl 1146.35353 · doi:10.1016/S0362-546X(02)00150-5
[5] DOI: 10.1016/j.jmaa.2003.11.020 · Zbl 1072.35138 · doi:10.1016/j.jmaa.2003.11.020
[6] DOI: 10.1016/j.na.2010.02.018 · Zbl 1189.35131 · doi:10.1016/j.na.2010.02.018
[7] DOI: 10.1098/rspa.2005.1633 · Zbl 1149.76692 · doi:10.1098/rspa.2005.1633
[8] Saoudi K, J.A.A.
[9] Saoudi K, J. Adv. Math. Stud 9 pp 292– (2016)
[10] Saoudi K, Complex Var. Elliptic Equ (2000)
[11] Saoudi K, Int. J. Differ. Equ (2000)
[12] DOI: 10.1006/jfan.1994.1078 · Zbl 0805.35028 · doi:10.1006/jfan.1994.1078
[13] DOI: 10.1007/s00023-008-0386-4 · Zbl 1157.35046 · doi:10.1007/s00023-008-0386-4
[14] DOI: 10.1016/j.jfa.2009.04.001 · Zbl 1178.35176 · doi:10.1016/j.jfa.2009.04.001
[15] Saoudi K, Abstract Appl. Anal. pp 9– (2012)
[16] DOI: 10.1007/BF02567660 · Zbl 0761.35027 · doi:10.1007/BF02567660
[17] Brezis H, C.R. Acad. Sci. Paris sér. I Math 317 pp 465– (1993)
[18] DOI: 10.1006/jmaa.2000.7617 · Zbl 1028.46041 · doi:10.1006/jmaa.2000.7617
[19] Kovăčik O, Czech. Math. J 41 pp 592– (1991)
[20] DOI: 10.1016/j.jmaa.2005.03.013 · Zbl 1162.35374 · doi:10.1016/j.jmaa.2005.03.013
[21] Fan XL, Chin. J. Contemp. Math 24 pp 277– (2003)
[22] DOI: 10.2307/2044999 · Zbl 0526.46037 · doi:10.2307/2044999
[23] DOI: 10.1016/0362-546X(92)90023-8 · Zbl 0783.35020 · doi:10.1016/0362-546X(92)90023-8
[24] DOI: 10.1016/S0362-546X(97)00628-7 · Zbl 0927.46022 · doi:10.1016/S0362-546X(97)00628-7
[25] DOI: 10.1016/j.jde.2007.01.008 · Zbl 1143.35040 · doi:10.1016/j.jde.2007.01.008
[26] DOI: 10.1142/S0219199700000190 · Zbl 0965.35067 · doi:10.1142/S0219199700000190
[27] DOI: 10.1016/j.jmaa.2009.10.012 · Zbl 1193.35067 · doi:10.1016/j.jmaa.2009.10.012
[28] Saoudi K, J. Partial Differ. Equ 27 pp 115– (2014)
[29] DOI: 10.1080/17476933.2014.981169 · Zbl 1321.35031 · doi:10.1080/17476933.2014.981169
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.