×

Local “superlinearity” and “sublinearity” for the \(p\)-Laplacian. (English) Zbl 1178.35176

The authors obtain existence and multiplicity results for the parametric Dirichlet problem \(\Delta_p u+f_\lambda (x,u)=0\) set in a bounded domain, both in the subcritical and critical cases.
Also, as a by product, some improved strong comparison principles and \(C^{1,\alpha}\) estimates are given.

MSC:

35J62 Quasilinear elliptic equations
35J25 Boundary value problems for second-order elliptic equations
35B51 Comparison principles in context of PDEs
35B45 A priori estimates in context of PDEs
35B33 Critical exponents in context of PDEs
35J20 Variational methods for second-order elliptic equations
Full Text: DOI

References:

[1] Allegretto, W.; Huang, Yin Xi, A Picone’s identity for the \(p\)-Laplacian and applications, Nonlinear Anal., 32, 7, 819-830 (1998) · Zbl 0930.35053
[2] Ambrosetti, A.; Brezis, H.; Cerami, G., Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122, 2, 519-543 (1994) · Zbl 0805.35028
[3] A. Anane, Etudes des valeurs propres et de la résonance pour l’opérateur \(p\)-Laplacien, Thèse de doctorat, Université Libre de Bruxelles, 1988; A. Anane, Etudes des valeurs propres et de la résonance pour l’opérateur \(p\)-Laplacien, Thèse de doctorat, Université Libre de Bruxelles, 1988
[4] Arcoya, D.; Ruiz, D., The Ambrosetti-Prodi problem for the \(p\)-Laplacian operator, Comm. Partial Differential Equations, 31, 4-6, 849-865 (2006) · Zbl 1101.35033
[5] Boccardo, L.; Murat, F., Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal., 19, 6, 581-597 (1992) · Zbl 0783.35020
[6] Brezis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88, 3, 486-490 (1983) · Zbl 0526.46037
[7] Brezis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36, 4, 437-477 (1983) · Zbl 0541.35029
[8] Brezis, H.; Nirenberg, L., \(H^1\) versus \(C^1\) local minimizers, C. R. Acad. Sci. Paris Sér. I Math., 317, 5, 465-472 (1993) · Zbl 0803.35029
[9] Brock, F.; Iturriaga, L.; Ubilla, P., A multiplicity result for the \(p\)-Laplacian involving a parameter, Ann. Henri Poincaré, 9, 7, 1371-1386 (2008) · Zbl 1157.35046
[10] Cuesta, M.; Takáč, P., A strong comparison principle for the Dirichlet \(p\)-Laplacian, (Reaction Diffusion Systems. Reaction Diffusion Systems, Trieste, 1995. Reaction Diffusion Systems. Reaction Diffusion Systems, Trieste, 1995, Lect. Notes Pure Appl. Math., vol. 194 (1998), Dekker: Dekker New York), 79-87 · Zbl 0910.35006
[11] Cuesta, M.; Takáč, P., A strong comparison principle for positive solutions of degenerate elliptic equations, Differential Integral Equations, 13, 4-6, 721-746 (2000) · Zbl 0973.35077
[12] De Coster, C.; Henrard, M., Existence and localization of solution for second order elliptic BVP in presence of lower and upper solutions without any order, J. Differential Equations, 145, 2, 420-452 (1998) · Zbl 0908.35042
[13] de Figueiredo, D. G., Lectures on the Ekeland Variational Principle with Applications and Detours, Tata Inst. Fund. Res. Lect. Math. Phys., vol. 81 (1989), Springer-Verlag · Zbl 0688.49011
[14] de Figueiredo, D. G.; Gossez, J.-P.; Ubilla, P., Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. Funct. Anal., 199, 2, 452-467 (2003) · Zbl 1034.35042
[15] de Figueiredo, D. G.; Gossez, J.-P.; Ubilla, P., Multiplicity results for a family of semilinear elliptic problems under local superlinearity and sublinearity, J. Eur. Math. Soc., 8, 2, 269-286 (2006) · Zbl 1245.35048
[16] Fan, X., On the sub-supersolution method for \(p(x)\)-Laplacian equations, J. Math. Anal. Appl., 330, 1, 665-682 (2007) · Zbl 1206.35103
[17] Fleckinger-Pellé, J.; Takáč, P., Uniqueness of positive solutions for nonlinear cooperative systems with the \(p\)-Laplacian, Indiana Univ. Math. J., 43, 4, 1227-1253 (1994) · Zbl 0829.35033
[18] García, J.; Peral, I., Some results about the existence of a second positive solution in a quasilinear critical problem, Indiana Univ. Math. J., 43, 3, 941-957 (1994) · Zbl 0822.35048
[19] García, J.; Peral, I.; Manfredi, J., Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math., 2, 3, 385-404 (2000) · Zbl 0965.35067
[20] Gazzola, F.; Malchiodi, A., Some remarks on the equation \(- \Delta u = (u + 1)^p\) for varying domains, Comm. Partial Differential Equations, 27, 809-845 (2002) · Zbl 1010.35042
[21] Giacomoni, J.; Schindler, I.; Takáč, P., Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 6, 1, 117-158 (2007) · Zbl 1181.35116
[22] Guedda, M.; Véron, L., Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., 13, 8, 879-902 (1989) · Zbl 0714.35032
[23] Guo, Zongming; Zhang, Zhitao, \(W^{1, p}\) versus \(C^1\) local minimizers and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl., 286, 1, 32-50 (2003) · Zbl 1160.35382
[24] Kavian, O., Introduction à la théorie des points critiques et applications aux problèmes elliptiques, Math. Appl., vol. 13 (1993), Springer-Verlag · Zbl 0797.58005
[25] O.A. Ladyženskaja, N.N. Ural’ceva, Équations aux dérivées partielles de type elliptique, Monographies Universitaires de Mathématiques, No. 31, Dunod, 1968; O.A. Ladyženskaja, N.N. Ural’ceva, Équations aux dérivées partielles de type elliptique, Monographies Universitaires de Mathématiques, No. 31, Dunod, 1968 · Zbl 0164.13001
[26] Lieberman, G. M., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12, 11, 1203-1219 (1988) · Zbl 0675.35042
[27] Lindqvist, P., On the equation \(div(| \nabla u |^{p - 2} \nabla u) + \lambda | u |^{p - 2} u = 0\), Proc. Amer. Math. Soc., 109, 1, 157-164 (1990) · Zbl 0714.35029
[28] Peral, I., Some results on quasilinear elliptic equations: Growth versus shape, (Nonlinear Functional Analysis and Applications to Differential Equations. Nonlinear Functional Analysis and Applications to Differential Equations, Trieste, 1997 (1998), World Sci. Publ.), 153-202 · Zbl 0955.35030
[29] Pucci, P.; Serrin, J., The Maximum Principle, Progr. Nonlinear Differential Equations Appl., vol. 73 (2007), Birkhäuser · Zbl 1134.35001
[30] Struwe, M., Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergeb. Math. Grenzgeb., vol. 34 (2000), Springer-Verlag · Zbl 0939.49001
[31] Vázquez, J. L., A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12, 3, 191-202 (1984) · Zbl 0561.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.