×

Convergence of the natural \(p\)-means for the \(p\)-Laplacian. (English) Zbl 1479.35486

The authors consider a Dirichlet problem for the \(p\)-Laplace operator in a bounded open Lipschitz subset \(\Omega\) of the Euclidean space and prove a uniform approximation result in the closure \(\overline{\Omega}\) of \(\Omega\) for the solution in terms of ‘\(p\)-means’ defined in a neighborhood of \(\overline{\Omega}\) and introduced by M. Ishiwata et al. [Calc. Var. Partial Differ. Equ. 56, No. 4, Paper No. 97, 22 p. (2017; Zbl 1378.35147)]. Then the authors consider a corresponding result in the Heisenberg group.

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35D40 Viscosity solutions to PDEs
49L20 Dynamic programming in optimal control and differential games
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
35R03 PDEs on Heisenberg groups, Lie groups, Carnot groups, etc.

Citations:

Zbl 1378.35147
Full Text: DOI

References:

[1] T. Adamowicz, A. Kijowski, A. Pinamonti and B. Warhurst, Variational approach to the asymptotic mean-value property for the p-Laplacian on Carnot groups. Nonlinear Anal. 198 (2020) 111893. · Zbl 1440.35039
[2] Á. Arroyo, J. Heino and M. Parviainen, Tug-of-war games with varying probabilities and the normalized p(x)-Laplacian. Commun. Pure Appl. Anal. 16 (2017) 915-944. · Zbl 1359.35062 · doi:10.3934/cpaa.2017044
[3] Á. Arroyo and J.G. Llorente, On the asymptotic mean value property for planar p-harmonic functions. Proc. Amer. Math. Soc. 144 (2016) 3859-3868. · Zbl 1345.31006
[4] G. Barles and J. Burdeau, The Dirichlet problem for semilinear second-order degenerate elliptic equations and applications to stochastic exit time control problems. Commun. Partial Differ. Equ. 20 (1995) 129-178. · Zbl 0826.35038
[5] G. Barles and P.E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal. 4 (1991) 271-283. · Zbl 0729.65077 · doi:10.3233/ASY-1991-4305
[6] P. Blanc and J.D. Rossi, Game theory and nonlinear partial differential equations. Series in Nonlinear Analysis and Applications. De Gruyter (2019). · Zbl 1430.91001
[7] K.K. Brustad, The one-dimensional nonlocal dominative p-laplace equation. Preprint arXiv:2012.11979 (2020).
[8] E.W. Chandra, M. Ishiwata, R. Magnanini and H. Wadade, Variational p-harmonious functions: existence and convergence to p-harmonic functions. Preprint arXiv:2101.02662 (2021).
[9] F. del Teso, J.J. Manfredi and M. Parviainen, Convergence of dynamic programming principles for the p-Laplacian. To appear Adv. Calc. Variat. (2020) https://doi.org/10.1515/acv-2019-0043. · Zbl 1486.35235
[10] F. Ferrari, Q. Liu and J. Manfredi, On the characterization of p-harmonic functions on the Heisenberg group by mean value properties. Discrete Contin. Dyn. Syst. 34 (2014) 2779-2793. · Zbl 1293.35350
[11] M. Freidlin, Functional integration and partial differential equations. Vol. 109 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ (1985). · Zbl 0568.60057
[12] H. Hartikainen, A dynamic programming principle with continuous solutions related to the p-Laplacian, 1 < p < ∞. Differ. Integral Equ. 29 (2016) 583-600. · Zbl 1374.35020
[13] M. Ishiwata, R. Magnanini and H. Wadade, A natural approach to the asymptotic mean value property for the p-Laplacian. Calc. Var. Partial Differ. Equ. 56 (2017) 97. · Zbl 1378.35147
[14] P. Juutinen, P. Lindqvist and J.J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation. SIAM J. Math. Anal. 33 (2001) 699-717. · Zbl 0997.35022
[15] B. Kawohl, J. Manfredi and M. Parviainen, Solutions of nonlinear PDEs in the sense of averages. J. Math. Pures Appl. 97 (2012) 173-188. · Zbl 1236.35083
[16] E. Le Gruyer On absolutely minimizing Lipschitz extensions and PDE Δ_∞(u) = 0. NoDEA Nonlinear Differ. Equ. Appl. 14 (2007) 29-55. · Zbl 1154.35055
[17] E. Le Gruyer and J.C. Archer, Harmonious extensions. SIAM J. Math. Anal. 29 (1998) 279-292 (electronic). · Zbl 0915.46002
[18] P. Lindqvist, On the definition and properties of p-superharmonic functions. J. Reine Angew. Math. 365 (1986) 67-79. · Zbl 0572.31004
[19] Q. Liu and A. Schikorra, General existence of solutions to dynamic programming equations. Commun. Pure Appl. Anal. 14 (2015) 167-184. · Zbl 1326.35395
[20] H. Luiro, M. Parviainen and E. Saksman, On the existence and uniqueness of p-harmonious functions. Differ. Integr. Equ. 27 (2014) 201-216. · Zbl 1324.49029
[21] J.J. Manfredi, M. Parviainen and J.D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equationsrelated to tug-of-war games. SIAM J. Math. Anal. 42 (2010) 2058-2081. · Zbl 1231.35107 · doi:10.1137/100782073
[22] O.A. Oleĭnik and E.V. Radkevič, Second order equations with nonnegative characteristic form. Translated from the Russian by Paul C. Fife. Plenum Press, New York-London (1973).
[23] Y. Peres, O. Schramm, S. Sheffield and D.B. Wilson, Tug-of-war and the infinity Laplacian. J. Am. Math. Soc. 22 (2009) 167-210. · Zbl 1206.91002
[24] Y. Peres and S. Sheffield, Tug-of-war with noise: a game-theoretic view of the p-Laplacian. Duke Math. J. 145 (2008) 91-120. · Zbl 1206.35112 · doi:10.1215/00127094-2008-048
[25] T. Rado, Subharmonic Functions. Ergenbisse der Mathmatick und ihrer Grenzgebiete. Chelsea Publishing Co., New York, N. Y. (1949).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.