×

Nonlinear dynamics of a marine phytoplankton-zooplankton system. (English) Zbl 1418.92229

Summary: In the paper, the nonlinear dynamics of a marine phytoplankton-zooplankton system is discussed in detail. The aim is to deeply expound how to use the dynamical laws of marine ecological system to perfectly reflect the operating rules of marine ecosystems. The mathematical work has been pursuing the investigation of some conditions for the local and global stability of the equilibrium, as well as Turing instability, which can deduce a key parameter control relationship and in turn can provide a theoretical basis for the numerical simulation. The simulation work indicates that the theoretical results are correct, and the nonlinear dynamics of the marine system mainly depend on some critical parameters. The results further suggested that the diffusion and the environmental carrying capacity have an important role to play in the interaction between phytoplankton and zooplankton. All these results are expected to be of use in the study of the internal operating rules and characteristics of marine ecosystems.

MSC:

92D40 Ecology

References:

[1] Anderson, D: Turning back the harmful red tide. Nature 338, 513-514 (1997) · doi:10.1038/41415
[2] Chattopadhyay, J, Sarkar, RR, El Abdllaoui, A: A delay differential equation model on harmful algal blooms in the presence of toxic substances. IMA J. Math. Appl. Med. Biol. 19, 137-161 (2002) · Zbl 1013.92046 · doi:10.1093/imammb/19.2.137
[3] Morozov, AY, Petrovskii, SV, Nezlin, NP: Towards resolving the paradox of enrichment: the impact of zooplankton vertical migrations on plankton system stability. J. Theor. Biol. 248, 501-511 (2007) · Zbl 1451.92332 · doi:10.1016/j.jtbi.2007.05.028
[4] Mukhopadhyay, B, Bhattacharya, R: A delay-diffusion model of marine plankton ecosystem exhibiting cyclic nature of blooms. J. Biol. Phys. 31, 3-22 (2005) · doi:10.1007/s10867-005-2306-x
[5] Yang, J, Zhao, M: Complex behavior in a fish algae consumption model with impulsive control strategy. Discrete Dyn. Nat. Soc. 2011, Article ID 163541 (2011) · Zbl 1233.92080
[6] Maiti, A, Jana, MM, Samanta, GP: Deterministic and stochastic analysis of a ratio-dependent of a prey-predator system with delay. Nonlinear Anal., Model. Control 12(3), 383-398 (2007) · Zbl 1134.92039
[7] Samanta, GP: Stochastic analysis of a prey-predator system. Int. J. Math. Educ. Sci. Technol. 25(6), 793-803 (1994) · Zbl 0879.92030 · doi:10.1080/0020739940250603
[8] Zhao, M, Wang, YZ, Chen, LS: Dynamic analysis of a predator-prey (pest) model with disease in prey and involving an impulsive control strategy. J. Appl. Math. 2012, Article ID 969425 (2012) · Zbl 1251.93092
[9] Dai, CJ, Zhao, M: Mathematic and dynamic analysis of a prey-predator system in the presence of alternative prey with impulsive state feedback control. Discrete Dyn. Nat. Soc. 2012, Article ID 724014 (2012) · Zbl 1244.92052 · doi:10.1155/2012/724014
[10] Gazi, NH, Bandyopadyay, M: Effect of time delay on a detritus-based ecosystem. Int. J. Math. Math. Sci. 2006, Article ID 25619 (2006) · Zbl 1127.92042 · doi:10.1155/IJMMS/2006/25619
[11] Fay, P: The Blue-Greens. Arnold, London (1983)
[12] Sharma, A, Sharma, AK, Agnihotri, K: The dynamic of plankton-nutrient interaction with delay. Appl. Math. Comput. 231, 503-515 (2014) · Zbl 1410.37078
[13] Steele, JH: Structure of Marine Ecosystems. Blackwell Sci., Oxford (1974) · doi:10.4159/harvard.9780674592513
[14] Beretta, E, Bischi, G, Solimano, F: Stability in chemostat equations with delayed nutrient recycling. J. Math. Biol. 28, 99-111 (1990) · Zbl 0665.45006 · doi:10.1007/BF00171521
[15] Taylor, AJ: Characteristic properties of model for the vertical distributions of phytoplankton under stratification. Ecol. Model. 40, 175-199 (1988) · doi:10.1016/0304-3800(88)90017-8
[16] Wroblewski, JS, Sarmiento, JL, Flierl, GR: An ocean basin scale model of plankton dynamics in the North Atlantic: 1. Solutions for the climatological oceanographic condition in may. Glob. Biogeochem. Cycles 2, 199-218 (1988) · doi:10.1029/GB002i003p00199
[17] Janga, SRJ, Baglama, J, Rick, J: Nutrient-phytoplankton-zooplankton models with a toxin. Math. Comput. Model. 43, 105-118 (2006) · Zbl 1086.92053 · doi:10.1016/j.mcm.2005.09.030
[18] Hallegraeff, G: A review of harmful algae blooms and the apparent global increase. Phycologia 32, 79-99 (1993) · doi:10.2216/i0031-8884-32-2-79.1
[19] Chattopadhyay, J, Sarkar, R: A delay differential equation model on harmful algal blooms in the presence of toxic substances. IMA J. Math. Appl. Med. Biol. 19, 137-161 (2002) · Zbl 1013.92046 · doi:10.1093/imammb/19.2.137
[20] Keating, KI: Algal Metabolite Influence on Bloom Sequence in Eutrophic Freshwater Ponds. Ecological Monograph Series (EPA-600/3-76-081). Government Printing Office, Washington (1976)
[21] Kirk, K, Gilbert, J: Variation in herbivore response to chemical defenses: zooplankton foraging on toxic cynobacteria. Ecology 73, 2208-2217 (1992) · doi:10.2307/1941468
[22] Roy, S: The coevolution of two phytoplankton species on a single resource: allelopathy as a pseudo-mixotrophy. Theor. Popul. Biol. 75, 68-75 (2009) · Zbl 1210.92058 · doi:10.1016/j.tpb.2008.11.003
[23] Jiao, JJ, Chen, LS: Dynamical analysis on a single population model with state-dependent impulsively unilateral diffusion between two patches. Adv. Differ. Equ. 2012, 155 (2012) · Zbl 1377.92070 · doi:10.1186/1687-1847-2012-155
[24] Zhao, M, Lv, SJ: Chaos in a three-species food chain model with a Beddington-DeAngelis functional response. Chaos Solitons Fractals 40(5), 2305-2316 (2009) · Zbl 1198.37139 · doi:10.1016/j.chaos.2007.10.025
[25] Turing, AM: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37-72 (1952) · Zbl 1403.92034 · doi:10.1098/rstb.1952.0012
[26] Segal, LA, Jackson, JL: Dissipative structure: an explanation and ecological example. J. Theor. Biol. 37, 545-559 (1972) · doi:10.1016/0022-5193(72)90090-2
[27] Holling, CS: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 45, 3-60 (1965)
[28] Jang, S, Baglama, J, Wu, L: Dynamics of phytoplankton-zooplankton systems with toxin producing phytoplankton. Appl. Math. Comput. 227, 717-740 (2014) · Zbl 1365.92093
[29] Wang, YZ, Zhao, M: Dynamic analysis of an impulsively controlled predator-prey model with Holling type IV functional response. Discrete Dyn. Nat. Soc. 2012, Article ID 141272 (2012) · Zbl 1233.92079
[30] Ivlev, VS: Experimental Ecology of the Feeding of Fishes. Yale University Press, New Haven (1961)
[31] Gazi, NH: Dynamics of a marine plankton system: diffusive instability and pattern formation. Appl. Math. Comput. 218, 8895-8905 (2012) · Zbl 1245.35135
[32] Dai, CJ, Zhao, M, Chen, LS: Dynamic complexity of an Ivlev-type prey-predator system with impulsive state feedback control. J. Appl. Math. 2012, Article ID 534276 (2012) · Zbl 1256.34032
[33] Fussmann, GF, Ellner, SP, Shertzer, KW, Shertzer, NG: Crossing the Hopf bifurcation in a live predator-prey system. Science 17, 1358-1360 (2000) · doi:10.1126/science.290.5495.1358
[34] van Baalen, M, Křivan, V, van Rijn, P, Sabelis, M: Alternative food, switching predators, and the persistence of predator-prey systems. Am. Nat. 157, 512-524 (2001) · doi:10.1086/319933
[35] Henry, D: Geometric Theory of Semilinear Parabolic Equations. Springer, New York (1981) · Zbl 0456.35001 · doi:10.1007/BFb0089647
[36] Dubey, B, Hussain, J: Modelling the interaction of two biological species in polluted environment. J. Math. Anal. Appl. 246, 58-79 (2000) · Zbl 0952.92030 · doi:10.1006/jmaa.2000.6741
[37] Dubey, B, Kumari, N, Upadhyay, RK: Spatiotemporal pattern formation in a diffusive predator prey system: an analytical approach. J. Appl. Math. Comput. 31, 413-432 (2009) · Zbl 1181.35022 · doi:10.1007/s12190-008-0221-6
[38] Landry, MR, Constantinou, J, Kirshtein, J: Microzooplankton grazing in the central equatorial Pacific during February and August. Deep-Sea Res., Part 2, Top. Stud. Oceanogr. 42, 657-672 (1995) · doi:10.1016/0967-0645(95)00024-K
[39] Fasham, MJR: Variations in the seasonal cycle of biological production in subarctic oceans: a model sensitivity analysis. Deep-Sea Res., Part 1, Oceanogr. Res. Pap. 42, 1111-1149 (1995) · doi:10.1016/0967-0637(95)00054-A
[40] Doney, SC, Glover, DM, Najjar, RG: A new coupled one-dimensional biological-physical model for the upper ocean: applications to the JGOFS Bermuda Atlantic timeseries study (BATS) site. Deep-Sea Res., Part 2, Top. Stud. Oceanogr. 43, 591-624 (1996) · doi:10.1016/0967-0645(95)00104-2
[41] Pearson, JE: Complex patterns in a simple system. Science 261, 189-192 (1993) · doi:10.1126/science.261.5118.189
[42] Wang, WM, Lin, YZ, Zhang, L, Rao, F, Tan, YJ: Complex patterns in a predator-prey model with self and cross-diffusion. Commun. Nonlinear Sci. Numer. Simul. 16, 2006-2015 (2011) · Zbl 1221.35423 · doi:10.1016/j.cnsns.2010.08.035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.