×

A new energy upper bound for AdS black holes inspired by free field theory. (English) Zbl 1478.83137

Summary: We consider the toroidally compactified planar AdS-Schwarzschild solution to 4-dimensional gravity with negative cosmological constant. This has a flat torus conformal boundary metric. We show that if the spatial part of the boundary metric is deformed, keeping it static and the temperature and area fixed, then assuming a static bulk solution exists, its energy is less than that of the AdS-Schwarzschild solution. The proof is non-perturbative in the metric deformation. While we expect the same holds for the free energy for black hole solutions we are so far are not able to prove it. In the context of AdS-CFT this implies a 3-dimensional holographic CFT on a flat spatial torus whose bulk dual is AdS-Schwarzschild has a greater energy than if the spatial geometry is deformed in any way that preserves temperature and area. This work was inspired by previous results in free field theory, where scalars and fermions in 3-dimensions have been shown to energetically disfavour flat space.

MSC:

83C57 Black holes
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
81T20 Quantum field theory on curved space or space-time backgrounds
81T28 Thermal quantum field theory

References:

[1] Fischetti S, Wallis L and Wiseman T 2018 Phys. Rev. Lett.120 261601 · doi:10.1103/PhysRevLett.120.261601
[2] Cheamsawat K, Wallis L and Wiseman T 2019 Class. Quantum Grav.36 195011 · Zbl 1478.81028 · doi:10.1088/1361-6382/ab353d
[3] Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I and Firsov A 2004 Science306 666 · doi:10.1126/science.1102896
[4] Novoselov K et al 2005 Nature438 197 · doi:10.1038/nature04233
[5] Fialkovsky I V and Vassilevich D V 2016 Mod. Phys. Lett. A 31 1630047 (Proc., 19th Int. Seminar on High Energy Physics (Quarks 2016) (Pushkin, Russia, 29 May-4 June 2016)) · Zbl 1354.81043 · doi:10.1142/S0217732316300470
[6] de Juan F, Sturla M and Vozmediano M A H 2012 Phys. Rev. Lett.108 227205 · doi:10.1103/PhysRevLett.108.227205
[7] Bobev N, Bueno P and Vreys Y 2017 J. High Energy Phys.JHEP07(2017) 093 · Zbl 1380.81296 · doi:10.1007/JHEP07(2017)093
[8] Maldacena J M 1999 Int. J. Theor. Phys.38 1113 · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[9] Maldacena J M 1998 Adv. Theor. Math. Phys.2 231 · Zbl 0914.53047 · doi:10.4310/ATMP.1998.v2.n2.a1
[10] Witten E 1998 Adv. Theor. Math. Phys.2 253 · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[11] Gubser S S, Klebanov I R and Polyakov A M 1998 Phys. Lett. B 428 105 · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[12] Horowitz G T and Myers R C 1998 Phys. Rev. D 59 026005 · doi:10.1103/PhysRevD.59.026005
[13] Blanco-Pillado J J and Minamitsuji M 2015 J. Cosmol. Astropart. Phys.JCAP06(2015) 024 · doi:10.1088/1475-7516/2015/06/024
[14] Zofka M and Bicak J 2008 Class. Quantum Grav.25 015011 · Zbl 1132.83007 · doi:10.1088/0264-9381/25/1/015011
[15] Aharony O, Minwalla S and Wiseman T 2006 Class. Quantum Grav.23 2171 · Zbl 1090.83018 · doi:10.1088/0264-9381/23/7/001
[16] Marolf D, Rangamani M and Wiseman T 2014 Class. Quantum Grav.31 063001 · Zbl 1292.83002 · doi:10.1088/0264-9381/31/6/063001
[17] Anderson M T, Chrusciel P T and Delay E 2002 J. High Energy Phys.JHEP10(2002) 063 · doi:10.1088/1126-6708/2002/10/063
[18] Balasubramanian V and Kraus P 1999 Commun. Math. Phys.208 413 · Zbl 0946.83013 · doi:10.1007/s002200050764
[19] Henningson M and Skenderis K 1998 J. High Energy Phys.JHEP07(1998) 023 · Zbl 0958.81083 · doi:10.1088/1126-6708/1998/07/023
[20] Hickling A and Wiseman T 2016 Class. Quantum Grav.33 045009 · Zbl 1338.83133 · doi:10.1088/0264-9381/33/4/045009
[21] Emparan R, Fernandez-Pique A and Luna R 2017 J. High Energy Phys.JHEP09(2017) 150 · Zbl 1382.81157 · doi:10.1007/JHEP09(2017)150
[22] Figueras P and Tunyasuvunakool S 2014 J. High Energy Phys.JHEP06(2014) 025 · doi:10.1007/JHEP06(2014)025
[23] Skenderis K 2002 Class. Quantum Grav.19 5849 (The Quantum Structure of Space-Time and the Geometric Nature of Fundamental Interactions. Proc., RTN European Winter School (Utrecht, Netherlands, 17-22 January 2002)) · Zbl 1044.83009 · doi:10.1088/0264-9381/19/22/306
[24] de Haro S, Solodukhin S N and Skenderis K 2001 Commun. Math. Phys.217 595 · Zbl 0984.83043 · doi:10.1007/s002200100381
[25] Fischetti S and Wiseman T 2017 J. High Energy Phys.JHEP12(2017) 133 · Zbl 1383.83039 · doi:10.1007/JHEP12(2017)133
[26] Robinson D C 1977 Gen. Relativ. Gravit.8 695 · Zbl 0429.53043 · doi:10.1007/BF00756322
[27] Lindblom L 1980 J. Math. Phys.21 1455 · doi:10.1063/1.524573
[28] Boucher W, Gibbons G W and Horowitz G T 1984 Phys. Rev. D 30 2447 · doi:10.1103/PhysRevD.30.2447
[29] Buchdahl H A 1960 J. Math. Phys.1 537 · Zbl 0096.22202 · doi:10.1063/1.1703690
[30] Lanczos C 1938 Ann. Math.39 842 · JFM 64.0767.03 · doi:10.2307/1968467
[31] Chrusciel P T and Simon W 2001 J. Math. Phys.42 1779 · Zbl 1009.83009 · doi:10.1063/1.1340869
[32] Nozawa M, Shiromizu T, Izumi K and Yamada S 2018 Class. Quantum Grav.35 175009 · Zbl 1409.83108 · doi:10.1088/1361-6382/aad206
[33] Galloway G J and Woolgar E 2015 J. High Energy Phys.JHEP06(2015) 051 · Zbl 1388.83041 · doi:10.1007/JHEP06(2015)051
[34] Chruściel P T, Galloway G J and Potaux Y 2019 (arXiv:1910.00070 [gr-qc])
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.