×

Stable conjugacy and epipelagic \(L\)-packets for Brylinski-Deligne covers of \(\mathrm{Sp}(2n)\). (English) Zbl 1478.22012

Sel. Math., New Ser. 26, No. 1, Paper No. 12, 123 p. (2020); correction ibid. 27, No. 3, Paper No. 33, 6 p. (2021).
The paper under review defines the notion of stable conjugacy in the Brylinski-Deligne covering (BD-covering for short) of the symplectic group over a local field \(F\) (whose characteristic is not 2). To justify the definition, the author constructed the epipelagic L-packets and showed their compatibility with his notion of stable conjugacy. The paper contains a careful and detailed account of many subjects, such as a survey on the Brylinski-Deligne covering, stable conjugacy in Sp(2n), and L-group of BD-covering. Therefore it also could be served as a great reference for these subjects.
Brylinski and Deligne built a functorial framework to produce central extensions of a reductive algebraic group. The theory is reviewed in Section 1. In the following, let \(1\rightarrow \mu_m\rightarrow \tilde{G} \xrightarrow{\ \ p \ \ } G\rightarrow 1\) be the \(m\)-fold BD-covering of \(G=\mathrm{Sp}(2n,F)\) where \(\mu_m\) is the group of \(m\)-th roots of unity. A representation of \(\tilde{G}\) is called genuine if \(\mu_m\) acts by the scalar multiplication. This paper is fundamental for the character theory of genuine representations of \(\tilde{G}\).
The set of good elements is of particular importance since every genuine invariant function (for example, the character of an irreducible genuine representation of \(\tilde{G}\)) on the \(\tilde{G}_{reg}\) vanishes off the good locus. The set of “good elements” in \(\tilde{G}\) is classified in Proposition 4.3.1.
A related question in the endoscopy theory is the stable conjugacy, i.e., conjugacy over the separable closure. Section 3 discussed the parameterization of stable conjugacy classes of regular semisimple elements in \(\mathrm{Sp}(2n,F)\). One of the necessary conditions for two regular semisimple elements \(\tilde{\delta}\) and \(\tilde{\eta}\) in \(\tilde{G}\) are stably conjugate is that their images in \(G\) are stably conjugate. However, the precise definition (Definition 4.3.10) of stable conjugacy in BD-coverings must refer to some additional data: a tuple \(\sigma\) of \(\pm\)-signs and some elements \(\delta_0,\eta_0\) in an isogeny of \(Z_G(\delta)\) (see \((4.1)\)). When \(4|m\) the reference to the additional data could be removed, see Corollary 4.4.4. The author shows in Section 9 that his definition of stable conjugacy is compatible with Adams’ definition for metaplectic groups (i.e., \(m=2\)) and Hiraga-Ikeda’s definition for \(\mathrm{SL}(2)\) (i.e., \(n=1\)). With the definition of stable conjugacy, the notion of stable character is given by Definition 4.4.5 (the case of \(4|m\) and that of \(4\not| m\) are treated separately).
In sections 5-7, the author discuss the definition of L-group for \(\tilde{G}\). Following Reeder-Yu and Kaletha, epipelagic L-parameters (Definition 7.4.1) and the corresponding L-package (Definition 7.3.6 and Definition 7.4.4) are defined. Note that when \(4|m\), there may be no epipelagic representations attached to a certain parameter. Then the stability of the invariant distributions (Definition 7.6.1) arose from the epipelagic L-packet is verified using Adler-Spice’s character formula in Section 7.6. Furthermore, the compatibility of the epipelagic L-packet of SO(2n+1) with that of the metaplectic group via theta-lifting is established in Theorem 9.3.3.

MSC:

22E50 Representations of Lie and linear algebraic groups over local fields
11F27 Theta series; Weil representation; theta correspondences

Software:

MathOverflow

References:

[1] user28172 (http://mathoverflow.net/users/28172/user28172). How fine one must choose an affine cover to get weil restriction? MathOverflow. http://mathoverflow.net/q/113891 (version: 2012-11-20). eprint: http://mathoverflow.net/q/113891
[2] Adams, Jeffrey, Lifting of characters on orthogonal and metaplectic groups, Duke Mathematical Journal, 92, 1, 129-178 (1998) · Zbl 0983.11025 · doi:10.1215/S0012-7094-98-09203-1
[3] Adams, Jeffrey; Barbasch, Dan, Compositio Mathematica, 113, 1, 23-66 (1998) · Zbl 0913.11022 · doi:10.1023/A:1000450504919
[4] Adler, Jd, Refined anisotropic \(K\)-types and supercuspidal representations, Pac. J. Math., 185, 1, 1-32 (1998) · Zbl 0924.22015 · doi:10.2140/pjm.1998.185.1
[5] Adler, Jd; Spice, Loren, Supercuspidal characters of reductive \(p\)-adic groups, Am. J. Math., 131, 4, 1137-1210 (2009) · Zbl 1173.22012 · doi:10.1353/ajm.0.0060
[6] Arthur, J.: An introduction to the trace formula. In: Harmonic Analysis, The Trace Formula, and Shimura Varieties, vol. 4. Clay Mathematics Proceedings, pp. 1-263. American Mathematical Society, Providence, RI (2005) · Zbl 1152.11021
[7] Bosch, Siegfried; Lütkebohmert, Werner; Raynaud, Michel, Néron Models (1990), Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg · Zbl 0705.14001
[8] Brylinski, J-L; Deligne, P., Central extensions of reductive groups by \(\text{K}_2 \), Publ. Math. Inst. Hautes Études Sci., 94, 5-85 (2001) · Zbl 1093.20027 · doi:10.1007/s10240-001-8192-2
[9] Bushnell, Colin J.; Henniart, Guy, The Local Langlands Conjecture for GL(2) (2006), Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg · Zbl 1100.11041
[10] Conrad, B., Gabber, O., Prasad, G.: Pseudo-reductive groups. Second, vol. 26. New Mathematical Monographs. Cambridge University Press, Cambridge, pp. xxiv+665. ISBN: 978-1-107-08723-1 (2015). 10.1017/CBO9781316092439 · Zbl 1314.20037
[11] Debacker, S.; Reeder, M., Depth-zero supercuspidal \(L\)-packets and their stability, Ann. Math. (2), 169, 3, 795-901 (2009) · Zbl 1193.11111 · doi:10.4007/annals.2009.169.795
[12] Deligne, P., Extensions centrales de groupes algébriques simplement connexes et cohomologie galoisienne, Publications mathématiques de l’IHÉS, 84, 1, 35-89 (1996) · Zbl 0930.20043 · doi:10.1007/BF02698835
[13] Deligne, P.: Le support du caractère d’une représentation supercuspidale. C. R. Acad. Sci. Paris Sér. A-B 283.4, Aii, A155-A157 (1976) · Zbl 0336.22009
[14] Flicker, Yz, Automorphic forms on covering groups of GL(2), Invent. Math., 57, 2, 119-182 (1980) · Zbl 0431.10014 · doi:10.1007/BF01390092
[15] Gan, W.T., Gao, F.: The Langlands-Weissman program for Brylinski-Deligne extensions. In: Astérisque 398. L-Groups and the Langlands Program for Covering Groups, pp. 187-275 (2018) · Zbl 1494.11001
[16] Gan, Wt; Savin, G., Representations of metaplectic groups I: Epsilon dichotomy and local Langlands correspondence, Compos. Math., 148, 6, 1655-1694 (2012) · Zbl 1325.11046 · doi:10.1112/S0010437X12000486
[17] Gille, P., Polo, P. (eds.): Schémas en groupes (SGA 3). Tome I. Propriétés générales des schémas en groupes. Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 7. Séminaire de Géométrie Algébrique du Bois Marie 1962-64. [Algebraic Geometry Seminar of Bois Marie 1962-64], A seminar directed by M. Demazure and A. Grothendieck with the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud and J-P. Serre, Revised and annotated edition of the 1970 French original. Société Mathématique de France, Paris, pp. xxviii+610 (2011) ISBN: 978-2-85629-323-2
[18] Gille, P., Polo, P. (eds.): Schémas en groupes (SGA 3). Tome III. Structure des schémas en groupes réductifs. Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 8. Séminaire de Géométrie Algébrique du Bois Marie 1962-64. [Algebraic Geometry Seminar of Bois Marie 1962-64], A seminar directed by M. Demazure and A. Grothendieck with the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud and J-P. Serre, Revised and annotated edition of the 1970 French original. Société Mathématique de France, Paris, pp. lvi+337 (2011) ISBN: 978- 2-85629-324-9
[19] Groupes de monodromie en géométrie algébrique. I. Lecture Notes in Mathematics, vol. 288. Séminaire de Géométrie Algébrique du Bois-Marie 1967-1969 (SGA 7 I), Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S. Rim. Springer, Berlin, pp. viii+523 (1972) · Zbl 0248.14006
[20] Hakim, J., Murnaghan, F.: Distinguished Tame Supercuspidal Representations. In: International Mathematics Research Notices IMRP 2, Art. ID rpn005, 166 (2008) · Zbl 1160.22008
[21] Harish-Chandra: Admissible Invariant Distributions on Reductive p-Adic Groups, vol. 16. University Lecture Series. Preface and notes by Stephen DeBacker and Paul J. Sally, Jr., pp. xiv+97. American Mathematical Society, Providence, RI (1999) ISBN: 0-8218-2025-7 · Zbl 0928.22017
[22] Ikeda, T., Hiraga, K.: Stabilization of the trace formula for the covering group of SL2 and its application to the theory of Kohnen plus spaces. Slides for PANT (2011)
[23] Jacquet, H.; Langlands, Rp, Automorphic Forms on GL(2) (1970), Berlin: Springer, Berlin · Zbl 0236.12010
[24] Kaletha, T., Epipelagic L-packets and rectifying characters, Invent. Math., 202, 1, 1-89 (2015) · Zbl 1428.11201 · doi:10.1007/s00222-014-0566-4
[25] Kaletha, T., Regular supercuspidal representations, J. Am. Math. Soc., 32, 4, 1071-1170 (2019) · Zbl 1473.22012 · doi:10.1090/jams/925
[26] Kaletha, T., Simple wild \(L\)-packets, J. Inst. Math. Jussieu, 12, 1, 43-75 (2013) · Zbl 1274.22011 · doi:10.1017/S1474748012000631
[27] Kazhdan, D.A., Patterson, S.J.: Metaplectic forms. Inst. Hautes Études Sci. Publ. Math. 59, 35-142 (1984). http://www.numdam.org/item?id=PMIHES_1984__59__35_0 · Zbl 0559.10026
[28] Kottwitz, Re, Stable trace formula: elliptic singular terms, Math. Ann., 275, 3, 365-399 (1986) · Zbl 0577.10028 · doi:10.1007/BF01458611
[29] Kubota, T.: On Automorphic Functions and the Reciprocity Law in a Number Field. Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 2. Kinokuniya Book-Store Co., Ltd., Tokyo, pp. iii+65 (1969) · Zbl 0231.10017
[30] Labesse, J-P; Langlands, Rp, \(L\)-indistinguishability for SL(2), Can. J. Math., 31, 4, 726-785 (1979) · Zbl 0421.12014 · doi:10.4153/CJM-1979-070-3
[31] Langlands, Rp; Shelstad, D., On the definition of transfer factors, Math. Ann., 278, 1-4, 219-271 (1987) · Zbl 0644.22005 · doi:10.1007/BF01458070
[32] Leslie, S., A generalized theta lifting, CAP representations, and Arthur parameters, Trans. Am. Math. Soc., 372, 7, 5069-5121 (2019) · Zbl 1479.11082 · doi:10.1090/tran/7863
[33] Li, W-W, La formule des traces pour les revêtements de groupes réductifs connexes. II. Analyse harmonique locale, Ann. Sci. Éc. Norm. Supér. (4), 45.5, 2012, 787-859 (2013) · Zbl 1330.11037
[34] Li, W-W, Transfert d’intégrales orbitales pour le groupe métaplectique, Compos. Math., 147, 2, 524-590 (2011) · Zbl 1216.22009 · doi:10.1112/S0010437X10004963
[35] Loke, Hy; Ma, J-J, Local theta correspondences between supercuspidal representations, Ann. Sci. Éc. Norm. Supér. (4), 51, 4, 927-991 (2018) · Zbl 1418.22009 · doi:10.24033/asens.2369
[36] Loke, Hy; Ma, J-J; Savin, G., Local theta correspondences between epipelagic supercuspidal representations, Math. Z., 283, 1-2, 169-196 (2016) · Zbl 1347.22011 · doi:10.1007/s00209-015-1594-5
[37] Matsumoto, H., Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. École Norm. Sup. (4), 2, 1-62 (1969) · Zbl 0261.20025 · doi:10.24033/asens.1174
[38] Milne, J.: The (failure of the) Hasse principle for centres of semisimple groups. http://www.jmilne.org/math/articles/1987T.pdf
[39] Moeglin, C., Vignéras, M.-F., Waldspurger, J.-L.: Correspondances de Howe sur un corps p-adique. Lecture Notes in Mathematics, vol. 1291, pp. viii+163. Springer, Berlin (1987) ISBN: 3-540-18699-9 · Zbl 0642.22002
[40] Moy, A.; Prasad, G., Jacquet functors and unrefined minimal \(K\)-types, Comment. Math. Helv., 71, 1, 98-121 (1996) · Zbl 0860.22006 · doi:10.1007/BF02566411
[41] Moy, A.; Prasad, G., Unrefined minimal \(K\)-types for p-adic groups, Invent. Math., 116, 1-3, 393-408 (1994) · Zbl 0804.22008 · doi:10.1007/BF01231566
[42] Perrin, Patrice, Representations de Schrödinger Indice de Maslov et groupe metaplectique, Lecture Notes in Mathematics, 370-407 (1981), Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg · Zbl 0462.22008
[43] Prasad, G., Galois-fixed points in the Bruhat-Tits building of a reductive group, Bull. Soc. Math. Fr., 129, 2, 169-174 (2001) · Zbl 0992.20032 · doi:10.24033/bsmf.2391
[44] Raghunathan, Ms, Tori in quasi-split-groups, J. Ramanujan Math. Soc., 19, 4, 281-287 (2004) · Zbl 1080.20042
[45] Reeder, M.; Yu, J-K, Epipelagic representations and invariant theory, J. Am. Math. Soc., 27, 2, 437-477 (2014) · Zbl 1284.22011 · doi:10.1090/S0894-0347-2013-00780-8
[46] Scharlau, Winfried, Quadratic and Hermitian Forms (1985), Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg · Zbl 0584.10010
[47] Springer, Ta, Regular elements of finite reflection groups, Invent. Math., 25, 159-198 (1974) · Zbl 0287.20043 · doi:10.1007/BF01390173
[48] Springer, Ta; Steinberg, R.; Steinberg, R.; Iwahori, N.; Borel, A.; Springer, Ta; Curtis, Cw; Carter, R., Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, NJ, 1968/69), 167-266 (1970), Berlin: Springer, Berlin · Zbl 0249.20024
[49] Suslin, Aa, Algebraic K-theory and the norm-residue homomorphism, J. Sov. Math., 30, 6, 2556-2611 (1985) · Zbl 0566.12016 · doi:10.1007/BF02249123
[50] Thomas, T., The Maslov index as a quadratic space, Math. Res. Lett., 13, 5-6, 985-999 (2006) · Zbl 1109.53075 · doi:10.4310/MRL.2006.v13.n6.a13
[51] Waldspurger, J-L, Le lemme fondamental implique le transfert, Compos. Math., 105, 2, 153-236 (1997) · Zbl 0871.22005 · doi:10.1023/A:1000103112268
[52] Waldspurger, J.-L.: Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés. Astérisque 269, pp. vi+449 (2001) · Zbl 0965.22012
[53] Waldspurger, J.-L.: L’endoscopie tordue n’est pas si tordue. In: Memoirs of the American Mathematical Society, 194.908, pp. x+261 (2008) · Zbl 1146.22016
[54] Weibel, C.A.: The K-book, vol. 145. Graduate Studies in Mathematics. An Introduction to Algebraic \(K\)-Theory, pp. xii+618. American Mathematical Society, Providence, RI (2013) ISBN: 978-0-8218-9132-2
[55] Weil, A., Sur certains groupes d’opérateurs unitaires, Acta Math., 111, 143-211 (1964) · Zbl 0203.03305 · doi:10.1007/BF02391012
[56] Weissman, M.H.: A comparison of L-groups for covers of split reductive groups. In: 398. L-Groups and the Langlands Program for Covering Groups, pp. 277-286 (2018) ISBN: 978-2-85629-845-9
[57] Weissman, Mh, Covering groups and their integral models, Trans. Am. Math. Soc., 368, 5, 3695-3725 (2016) · Zbl 1369.14058 · doi:10.1090/tran/6598
[58] Weissman, M.H.: L-groups and parameters for covering groups. In: 398. L-Groups and the Langlands Program for Covering Groups. pp. 33-186 (2018) ISBN: 978-2-85629-845-9 · Zbl 1494.11001
[59] Weissman, Mh, Metaplectic tori over local fields, Pac. J. Math., 241, 1, 169-200 (2009) · Zbl 1230.11064 · doi:10.2140/pjm.2009.241.169
[60] Yu, J-K, Construction of tame supercuspidal representations, J. Am. Math. Soc., 14, 3, 579-622 (2001) · Zbl 0971.22012 · doi:10.1090/S0894-0347-01-00363-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.