×

KKT preconditioners for PDE-constrained optimization with the Helmholtz equation. (English) Zbl 1477.65179

Summary: This paper considers preconditioners for the linear systems that arise from optimal control and inverse problems involving the Helmholtz equation. Specifically, we explore an all-at-once approach. The main contribution centers on the analysis of two block preconditioners. Variations of these preconditioners have been proposed and analyzed in prior works for optimal control problems where the underlying partial differential equation is a Laplace-like operator. In this paper, we extend some of the prior convergence results to Helmholtz-based optimization applications. Our analysis examines situations where control variables and observations are restricted to subregions of the computational domain. We prove that solver convergence rates do not deteriorate as the mesh is refined or as the wavenumber increases. More specifically, for one of the preconditioners we prove accelerated convergence as the wavenumber increases. Additionally, in situations where the control and observation subregions are disjoint, we observe that solver convergence rates have a weak dependence on the regularization parameter. We give a partial analysis of this behavior. We illustrate the performance of the preconditioners on control problems motivated by acoustic testing.

MSC:

65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
65K10 Numerical optimization and variational techniques
65F08 Preconditioners for iterative methods
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
49M41 PDE constrained optimization (numerical aspects)
49M05 Numerical methods based on necessary conditions
90C46 Optimality conditions and duality in mathematical programming
93B05 Controllability
93B07 Observability

Software:

clique; PSP; Trilinos
Full Text: DOI

References:

[1] CUBIT 15.6 User Documentation, Tech. Rep. SAND2020-4156W, Sandia National Labs, 2020.
[2] E. Auger, L. D’Auria, M. Martini, B. Chouet, and P. Dawson, Real-time monitoring and massive inversion of source parameters of very long period seismic signals: An application to Stromboli Volcano, Italy, Geophys. Res. Lett., 33 (2006), L08308, https://doi.org/10.1029/2005GL024703.
[3] A. Bayliss, C. I. Goldstein, and E. Turkel, An iterative method for the Helmholtz equation, J. Comput. Phys., 49 (1983), pp. 443-457. · Zbl 0524.65068
[4] Y. Choi, C. Farhat, W. Murray, and M. Saunders, A practical factorization of a Schur complement for PDE-constrained distributed optimal control, J. Sci. Comput., 65 (2015), pp. 576-597, https://doi.org/10.1007/s10915-014-9976-0. · Zbl 1327.65225
[5] P. Ciarlet, T-coercivity: Application to the discretization of Helmholtz-like problems, Comput. Math. Appl., 64 (2012), pp. 22-34. · Zbl 1252.35022
[6] L. Demkowicz, Asymptotic convergence in finite and boundary element methods: Part \textup1: Theoretical results, Comput. Math. Appl., 27 (1994), pp. 69-84. · Zbl 0807.65058
[7] J. Douglas, J. Santos, D. Sheen, and L. Bennethum, Frequency domain treatment of one-dimensional scalar waves, Math. Models Methods Appl. Sci., 3 (1993), pp. 171-194. · Zbl 0783.65070
[8] O. L. Elvetun and B. F. Nielsen, PDE-constrained optimization with local control and boundary observations: Robust preconditioners, SIAM J. Sci. Comput., 38 (2016), pp. A3461-A3491, https://doi.org/10.1137/140999098. · Zbl 1351.49036
[9] B. Engquist and L. Ying, Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation, Comm. Pure Appl. Math., 64 (2011), pp. 697-735. · Zbl 1229.35037
[10] B. Engquist and L. Ying, Sweeping preconditioner for the Helmholtz equation: Moving perfectly matched layers, Multiscale Model. Simul., 9 (2011), pp. 686-710, https://doi.org/10.1137/100804644. · Zbl 1228.65234
[11] Y. A. Erlangga, C. Vuik, and C. W. Oosterlee, On a class of preconditioners for solving the Helmholtz equation, Appl. Numer. Math., 50 (2004), pp. 409-425. · Zbl 1051.65101
[12] Y. A. Erlangga, C. Vuik, and C. W. Oosterlee, A comparison of multigrid and incomplete LU shifted Laplace preconditioners for the inhomogeneous Helmholtz equation, Appl. Numer. Math., 56 (2006), pp. 648-666. · Zbl 1094.65041
[13] O. G. Ernst and M. J. Gander, Why it is difficult to solve Helmholtz problems with classical iterative methods, in Numerical Analysis of Multiscale Problems, I. Graham, T. Hou, O. Lakkis, and R. Scheichl, eds., Lect. Notes Comput. Sci. Eng. 83, Springer, Heidelberg, 2012, pp. 325-363. · Zbl 1248.65128
[14] S. Esterhazy and J. Melenk, On stability of discretizations of the Helmholtz equation, in Numerical Analysis of Multiscale Problems, Lect. Notes Comput. Sci. Eng. 83, Springer, Heidelberg, 2012, pp. 285-324. · Zbl 1248.65115
[15] W. Hackbusch, Elliptic Differential Equations: Theory and Numerical Treatment, Springer Ser. Comput. Math. 18, Springer, Berlin, Heidelberg, 2017. · Zbl 1379.35001
[16] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley, An overview of the Trilinos project, ACM Trans. Math. Software, 31 (2005), pp. 397-423. · Zbl 1136.65354
[17] U. Hetmaniuk, Stability estimates for a class of Helmholtz problems, Commun. Math. Sci., 5 (2007), pp. 665-678. · Zbl 1135.35323
[18] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with PDE Constraints, Math. Model. Theory Appl. 23, Springer, New York, 2009. · Zbl 1167.49001
[19] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 2013. · Zbl 1267.15001
[20] F. Ihlenburg, Finite Element Analysis of Acoustic Scattering, Appl. Math. Sci. 132, Springer-Verlag, New York, 1998. · Zbl 0908.65091
[21] F. Ihlenburg and I. Babuska, Finite element solution of the Helmholtz equation with high wave number, part I: The h-version of the FEM, Comput. Math. Appl., 30 (1995), pp. 9-37. · Zbl 0838.65108
[22] P. Larkin, Developments in Direct-Field Acoustic Testing, Sound Vib., 48 (2014), pp. 6-10.
[23] K.-A. Mardal, B. F. Nielsen, and M. Nordaas, Robust preconditioners for PDE-constrained optimization with limited observations, BIT, 57 (2017), pp. 405-431. · Zbl 1368.65099
[24] J. M. Melenk, On Generalized Finite Element Methods, Ph.D. dissertation, University of Maryland, College Park, MD, 1995.
[25] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal., 12 (1975), pp. 617-629, https://doi.org/10.1137/0712047. · Zbl 0319.65025
[26] J. W. Pearson, M. Stoll, and A. J. Wathen, Regularization-robust preconditioners for time-dependent PDE-constrained optimization problems, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 1126-1152, https://doi.org/10.1137/110847949. · Zbl 1263.65035
[27] J. W. Pearson and A. J. Wathen, A new approximation of the Schur complement in preconditioners for PDE-constrained optimization, Numer. Linear Algebra Appl., 19 (2012), pp. 816-829, https://doi.org/10.1002/nla.814. · Zbl 1274.65187
[28] J. Poulson, B. Engquist, S. Li, and L. Ying, A Parallel Sweeping Preconditioner for Heterogeneous 3D Helmholtz Equations, preprint, https://arxiv.org/abs/1204.0111, 2012. · Zbl 1275.65073
[29] T. Rees, H. Dollar, and A. Wathen, Optimal preconditioners for PDE-constrained optimization, SIAM J. Sci. Comput., 32 (2010), pp. 271-298, https://doi.org/10.1137/080727154. · Zbl 1208.49035
[30] D. Ridzal, D. Kouri, and G. von Winckel, Rapid Optimization Library, Trilinos Users’ Group Meeting, SAND2017-12025PE, Sandia National Labs, 2017, https://doi.org/10.11578/dc.20171025.1598.
[31] A. J. Wathen, Realistic eigenvalue bounds for the Galerkin mass matrix, IMA J. Numer. Anal., 7 (1987), pp. 449-457. · Zbl 0648.65076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.