×

Trigonometrically fitted two-derivative Runge-Kutta-Nyström methods for second-order oscillatory differential equations. (English) Zbl 1477.65110

Summary: A new family of modified two-derivative Runge-Kutta-Nyström (TDRKN) methods are proposed for solving initial value problems of second-order oscillatory ordinary differential equations. Order conditions are obtained via the Nyström tree theory and the B-series theory. Trigonometric fitting conditions are derived. Two practical explicit trigonometrically fitted TDRKN (TFTDRKN) methods are constructed. The phase properties of the new integrators are examined and their periodicity regions are obtained. The results of numerical experiments show the efficiency and competence of the new methods compared with some highly efficient codes in the literature.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
Full Text: DOI

References:

[1] Albrecht, P., A new theoretical approach to Runge-Kutta methods, SIAM J. Numer. Anal., 24, 391-406 (1987) · Zbl 0617.65067
[2] Albrecht, P., The extension of the theory of A-methods to RK methods, (Strehmel, K., Numerical Treatment of Differential Equations, Proceedings of the 4th Seminar NUMDIFF-4 (1987), Tuebner-Texte Zur Mathematik: Tuebner-Texte Zur Mathematik Tuebner, Leipzig), 8-18 · Zbl 0682.65041
[3] Chan, R. P.K.; Tsai, A. Y.J., On explicit two-derivative Runge-Kutta methods, Numer. Algorithms, 53, 171-194 (2010) · Zbl 1185.65122
[4] Chen, Z.; Qiu, Z.; Li, J.; You, X., Two-derivative Runge-Kutta Nyström methods for second-order ordinary differential equations, Numer. Algorithms, 70, 897-927 (2015) · Zbl 1335.65059
[5] Coleman, J. P.; Ixaru, L. Gr., P-stability and exponential-fitting methods for \(y'' = f(x, y)\), IMA J. Numer. Anal., 16, 179-199 (1996) · Zbl 0847.65052
[6] Ehigie, J. O.; Zou, M.; Hou, X.; You, X., On modified TDRKN methods for second-order systems of differential equations, Int. J. Comput. Math., 95, 159-173 (2018) · Zbl 1390.65050
[7] Enright, W. H., Second derivative multistep methods for stiff ordinary differential equations, SIAM J. Numer. Anal., 11, 321-331 (1974) · Zbl 0249.65055
[8] Fang, Y.; You, X., New optimized two-derivative Runge-Kutta type methods for solving the radial Schrödinger equation, J. Math. Chem., 52, 240-254 (2014) · Zbl 1314.65100
[9] Fang, X.; You, X.; Ming, Q., Exponentially fitted two-derivative Runge-Kutta methods for the Schrödinger equation, Int. J. Mod. Phys. C, 24, Article 1350073 pp. (2013)
[10] Fang, Y.; You, X.; Ming, Q., Trigonometrically fitted two-derivative Runge-Kutta methods for solving oscillatory differential equations, Numer. Algorithms, 65, 651-667 (2014) · Zbl 1291.65221
[11] Franco, J. M., Runge-Kutta-Nyström methods adapted to the numerical integration of perturbed oscillators, Comput. Phys. Commun., 147, 770-787 (2002) · Zbl 1019.65050
[12] Franco, J. M., New methods for oscillatory systems based on ARKN methods, Appl. Numer. Math., 56, 1040-1053 (2006) · Zbl 1096.65068
[13] Franco, J. M., Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems, Comput. Phys. Commun., 177, 479-492 (2007) · Zbl 1196.65114
[14] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (2006), Springer-Verlag · Zbl 1094.65125
[15] Hairer, E.; Nørsett, S. P.; Wanner, G., Solving Ordinary Differential Equations I: Nonstiff Problems (1993), Springer-Verlag: Springer-Verlag Berlin · Zbl 0789.65048
[16] Ixaru, L. Gr.; Berghe, G. V., Exponential Fitting (2004), Kluwer Academic Publisher: Kluwer Academic Publisher The Netherlands · Zbl 1105.65082
[17] Paternoster, B., Runge-Kutta(-Nyström) methods for ODEs with periodic solutions based on trigonometric polynomials, Appl. Numer. Math., 28, 401-412 (1998) · Zbl 0927.65097
[18] Polynikis, A.; Hogan, S. J.; di Bernardo, M., Comparing different ODE modelling approaches for gene regulatory networks, J. Theor. Biol., 261, 511-530 (2009) · Zbl 1403.92095
[19] Simos, T. E.; Vigo-Aguiar, J., Exponentially fitted symplectic integrator, Phys. Rev. E, 67, Article 1 pp. (2003)
[20] van der Houwen, P. J.; Sommeijer, B. P., Diagonally implicit Runge-Kutta-Nyström methods for oscillatory problems, SIAM J. Numer. Anal., 26, 414-429 (1989) · Zbl 0676.65072
[21] van der Houwen, P. J.; Sommejer, B. P., Explicit Runge-Kutta(-Nyström) methods with reduced phase errors for computing oscillating solution, SIAM J. Numer. Anal., 24, 595-617 (1987) · Zbl 0624.65058
[22] Weinberger, H. F., A First Course in Partial Differential Equations with Complex Variables and Transform Methods (1965), Dover Publications Inc.: Dover Publications Inc. New York · Zbl 0127.04805
[23] Widder, S.; Schicho, J.; Schuster, P., Dynamic patterns of gene regulation I: simple two-gene systems, J. Theor. Biol., 246, 395-419 (2007) · Zbl 1451.92140
[24] Wu, X.; You, X.; Wang, B., Structure-Preserving Algorithms for Oscillatory Differential Equations (2013), Springer · Zbl 1276.65041
[25] You, X., Limit-cycle-preserving simulation of gene regulatory oscillators, Discrete Dyn. Nat. Soc., 2012, Article 673296 pp. (2012) · Zbl 1257.92026
[26] You, X.; Zhao, J.; Yang, H.; Fang, Y.; Wu, X., Order conditions for RKN methods solving general second-order oscillatory systems, Numer. Algorithms, 66, 147-176 (2014) · Zbl 1292.65083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.