×

Trigonometrically fitted two-derivative Runge-Kutta methods for solving oscillatory differential equations. (English) Zbl 1291.65221

Summary: Explicit trigonometrically fitted two-derivative Runge-Kutta (TFTDRK) methods solving second-order differential equations with oscillatory solutions are constructed. When the second derivative is available, TDRK methods can attain one algebraic order higher than Runge-Kutta methods of the same number of stages. TFTDRK methods have the favorable feature that they integrate exactly first-order systems whose solutions are linear combinations of functions from the set \(\{\exp\mathrm{i}\omega x),\exp (-\mathrm{i}\omega x)\}\) or equivalently the set \(\{\cos (\omega x),\sin (\omega x)\}\) with \(\omega >0\) the principal frequency of the problem. Four practical TFTDRK methods are constructed. Numerical stability and phase properties of the new methods are examined. Numerical results are reported to show the robustness and competence of the new methods compared with some highly efficient methods in the recent literature.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
Full Text: DOI

References:

[1] Simos, T.E.: A family of fifth algebraic order trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation. Comput. Mater. Sci. 34, 342-354 (2005) · doi:10.1016/j.commatsci.2005.01.007
[2] Simos, T.E., Aguiar, J.V.: A modified phase-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. J. Math. Chem. 30, 121-131 (2001) · Zbl 1003.65082 · doi:10.1023/A:1013185619370
[3] Franco, J.M.: Runge-Kutta methods adapted to the numerical integration of oscillatory problems. Numer. Math. Appl. 50, 427-443 (2004) · Zbl 1057.65043 · doi:10.1016/j.apnum.2004.01.005
[4] Van de Vyver, H.: An embedded exponentially fitted Runge-Kutta-Nyström method for the numerical solution of orbital problems. New Astron. 11, 577-587 (2006) · doi:10.1016/j.newast.2006.03.001
[5] Gautschi, W.: Numerical integration of ordinary differential equation based on trigonometric polynomials. Numer. Math. 3, 3811-397 (1961) · Zbl 0163.39002 · doi:10.1007/BF01386037
[6] Lyche, T.: Chebyshevian multistep methods for ordinary differential equations. Numer. Math. 19, 65-75 (1972) · Zbl 0221.65123 · doi:10.1007/BF01395931
[7] Vanden Berghe, G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially fitted explicit Runge-Kutta methods. J. Comput. Appl. Math. 125, 107-115 (2000) · Zbl 0999.65065 · doi:10.1016/S0377-0427(00)00462-3
[8] Vanden Berghe, G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially fitted Runge-Kutta methods. Comput. Phys. Comm. 123, 7-15 (1999) · Zbl 0948.65066 · doi:10.1016/S0010-4655(99)00365-3
[9] Franco, J.M.: Exponentially fitted explicit Runge-Kutta-Nyström methods. J. Comput. Appl. Math. 167, 1-19 (2004) · Zbl 1060.65073 · doi:10.1016/j.cam.2003.09.042
[10] Chan, R.P.K., Tasi, A.Y.J.: On explicit two-derivative Runge-Kutta methods. Numer. Algor. 53, 171-194 (2010) · Zbl 1185.65122 · doi:10.1007/s11075-009-9349-1
[11] Hairer, E., Nørsett, S.P., Wanner, S.P.: Solving Ordinary Differential Equations I, Nonstiff Problems. Springer, Berlin (1993) · Zbl 0789.65048
[12] Lambert, J.D., Watson, I.A.: Symmetric multistep methods for periodic initial value problems. J. Inst. Math. Appl. 18, 189-202 (1976) · Zbl 0359.65060 · doi:10.1093/imamat/18.2.189
[13] Coleman, J.P., Ixaru, L.Gr.: P-stability and exponential-fitting methods for y′′=f(x,y)\(y^{\prime \prime }=f(x,y)\) IMA. J. Numer. Anal. 16, 179-199 (1996) · Zbl 0847.65052 · doi:10.1093/imanum/16.2.179
[14] Van de Vyver, H.: Stability and phase-lag analysis of explicit Runge-Kutta methods with variable coefficients for oscillatory problems. Comput. Phys. Comm. 173, 115-130 (2005) · Zbl 1196.65117 · doi:10.1016/j.cpc.2005.07.007
[15] Van der Houwen, P.J., Sommeijer, B.P.: Explicit Runge-Kutta(-Nyström) methods with reduced phase errors for computing oscillating solution. SIAM J. Numer. Anal. 24, 595-617 (1987) · Zbl 0624.65058 · doi:10.1137/0724041
[16] Franco, J.M., Palacios, M.: High-order P-stable multistep methods. J. Comput. Appl. Math. 30, 1-10 (1990) · Zbl 0726.65091 · doi:10.1016/0377-0427(90)90001-G
[17] Franco, J.M.: A class of explicit two-step hybrid methods for second-order IVPs. J. Comput. Appl. Math. 187, 41-57 (2006) · Zbl 1082.65071 · doi:10.1016/j.cam.2005.03.035
[18] Galgani, L., Giorgilli, A., Martinoli, A., Vanzini, S.: On the problem of energy equipartition for large systems of the Fermi-Pasta-Ulam type: Analytical and numerical estimates. Physica. D 59, 334-348 (1992) · Zbl 0775.70023 · doi:10.1016/0167-2789(92)90074-W
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.