×

The geometry of point reflections and quasigroups. (English) Zbl 1477.20136

The paper gives a survey of results from the theory of medial and more general quasigroups and its connection with the geometry of point reflections.
The geometric theory of point reflections starts with two axiom systems \(\{S1-S4, S5\}\) or \(\{S1-S4, S6\}\) for the universal geometry \(\mathcal{V}\) of the Euclidean operations of point reflection and midpoint. These axioms are based on one sort of individual variables, to be interpreted as points, and two binary operation symbols \(\cdot \), with \(a \cdot b\) standing for “the reflection of \(b\) in \(a\)”, and \(\mu \), with \(\mu (a, b)\) standing for “the midpoint of segment \(ab\)”.
Quasigroups are also models of a certain axiom system in a language with the three binary operations \(\cdot\), \(\mu\) (both defined as above) and \(\nu \). In this context \(\mu(a,b)\) corresponds to the right division \(a/b\) and \(\nu(a,b)\) corresponds to the left division \(a\setminus b\). Moreover, the left cancellation law holds whenever \(S4\) holds, and the right cancellation law holds whenever \(S3\) holds.
The axioms \(S5\) and \(S6\) are equivalent over the theory defined by the axioms \(S1-S4\). Here, the axiom \(S5\) is the identity \(d\cdot (c\cdot (b\cdot a))=b\cdot (c\cdot (d\cdot a))\), and \(S6\) is the medial law \( (a\cdot b)\cdot (c\cdot d)=(a\cdot c)\cdot (b\cdot d)\). The authors give a new proof of this equivalence using purely syntactic derivations.
It is still an open question how many variables are needed for the axiomatization of \(\mathcal{V}\). Some aspects of the 3-variable theory and its connections with certain quasigroups are discussed. In particular, from the laws \(S5\) and \(S6\) one obtains 3-variable sentences by setting two variables equal, among them the left and the right distributive law for quasigroups. The authors also discuss the geometric meaning of these laws. A theorem of Kepka on certain anti-commutative quasigroups provides the following result: The geometry \(\mathcal{V}\) together with an additional property can be axiomatized by axioms containing at most 3 variables.
Next some representation theorems for certain classes of quasigroups are considered: first Toyoda’s representation theorem for medial quasigroups, then repesentation theorems for left Bruck loops and commutative Moufang loops. While Toyoda’s theorem provides a representation theorem for quasigrops satisfying the medial law \(S6\), here a representation theorem for quasigroups satisfying \(S5\) is given. It is shown that a quasigroup with \(S5\) is principally isotopic to an abelian group and is right linear on an abelian group. Moreover, an idempotent quasigroup with \(S5\) is a medial quasigroup.
In addition, quasigroups with the “reverse” property of \(S5\), namely \(((uz)y)x=((ux)y)z\), are characterized. It turns out that a quasigroup with this property is also principally isotopic to an abelian group and is left linear on an abelian group. An idempotent quasigroup with this property is medial. A quasigroup with both \(S5\) and its reverse is linear on an abelian group.
The last part of the paper is devoted to generalizations of \(S5\) by letting different binary operations take the place of the one \(\cdot \) operation occurring in \(S5\). These generalizations provide theorems for quasigroups without any known connection with geometry.

MSC:

20N05 Loops, quasigroups
51M05 Euclidean geometries (general) and generalizations
Full Text: DOI

References:

[1] Aczél, J., Lectures on Functional Equations and Their Applications (1966), New York: Academic Press, New York · Zbl 0139.09301
[2] Alama, J.; Pambuccian, V., From absolute to affine geometry in terms of point-reflections, midpoints, and collinearity, Note Mat., 36, 11-24 (2016) · Zbl 1414.51002
[3] Albert, A.A.: Quasigroups I, II. Trans. Am. Math. Soc. 54 507-519 (1943), 55 401-419 (1944) · Zbl 0063.00042
[4] Bachmann, F., Aufbau der Geometrie aus dem Spiegelungsbegriff (1973), Berlin: Springer, Berlin · Zbl 0254.50001 · doi:10.1007/978-3-642-65537-1
[5] Belousov, VD, The structure of distributive quasigroups, Mat. Sb. (N.S.), 50, 92, 267-298 (1960) · Zbl 0097.01002
[6] Belousov, V.D.: Globally associative systems of quasigroups. Mat. Sb. (N.S.), 55(97):2 (1961), 221-236 · Zbl 0124.25603
[7] Belousov, V.D.: Systems of quasigroups with generalized identities. Usp. Mat. Nauk. 20, 75-144 (1965) (in Russian) [English transl. in Russ. Math. Surv. 20, 73-143 (1965)] · Zbl 0135.03503
[8] Belousov, VD, Balanced identities in quasigroups, Mat. Sbornik (N.S.), 70, 55-97 (1966) · Zbl 0199.05203
[9] Bottema, O., On the medians of a triangle in hyperbolic geometry, Can. J. Math., 10, 502-506 (1958) · Zbl 0084.37403 · doi:10.4153/CJM-1958-049-5
[10] Brooke-Taylor, AD; Miller, SK, The quandary of quandles. A Borel complete knot invariant, J. Aust. Math. Soc., 108, 262-277 (2020) · Zbl 1482.20039 · doi:10.1017/S1446788719000399
[11] Bruck, RH, Some results in the theory of quasigroups, Trans. Am. Math. Soc., 55, 19-52 (1944) · Zbl 0063.00635 · doi:10.1090/S0002-9947-1944-0009963-X
[12] Drápal, A., Group isotopes and a holomorphic action, Results Math., 54, 3-4, 253-272 (2009) · Zbl 1190.20049 · doi:10.1007/s00025-009-0370-4
[13] Griess, RL Jr, A Moufang loop, the exceptional Jordan algebra, and a cubic form in 27 variables, J. Algebra, 131, 281-293 (1990) · Zbl 0718.17028 · doi:10.1016/0021-8693(90)90176-O
[14] Havel, HJ; Vanžurová, A., Medial Quasigroups and Geometry (2006), Olomouc: Palacký University, Olomouc · Zbl 1415.20001
[15] Hotje, H.; Marchi, M.; Pianta, S., On a class of point-reflection geometries, Discrete Math., 129, 139-147 (1994) · Zbl 0804.51018 · doi:10.1016/0012-365X(92)00508-O
[16] Issa, AN, Left distributive quasigroups and gyrogroups, J. Math. Sci. Univ. Tokyo, 8, 1-16 (2001) · Zbl 0989.20059
[17] Kargapolov, M.I., Merzlyakov, Yu.I.: Foundations of Group Theory. Nauka, Moscow (1977) (in Russian) · Zbl 0499.20001
[18] Karzel, H., Loops related to geometric structures, Quasigroups Relat. Syst., 15, 47-76 (2007) · Zbl 1134.20068
[19] Karzel, H.; Marchi, M.; Pianta, S., On commutativity in point-reflection geometries, J. Geom., 44, 102-106 (1992) · Zbl 0758.51012 · doi:10.1007/BF01228286
[20] Karzel, H.; Pianta, S., Binary operations derived from symmetric permutation sets and applications to absolute geometry, Discrete Math., 308, 415-421 (2008) · Zbl 1130.08001 · doi:10.1016/j.disc.2006.11.058
[21] Karzel, H.; Konrad, A., Reflection groups and \(K\)-loops, J. Geom., 52, 120-129 (1995) · Zbl 0821.51011 · doi:10.1007/BF01406832
[22] Kepka, T., Structure of weakly abelian quasigroups, Czechoslovak Math. J., 28, 181-188 (1978) · Zbl 0394.20055 · doi:10.21136/CMJ.1978.101525
[23] Kepka, T., A note on WA-quasigroups, Acta Univ. Carolin. Math. Phys., 19, 61-62 (1978) · Zbl 0382.20057
[24] Kepka, T., Distributive division groupoids, Math. Nachr., 87, 103-107 (1979) · Zbl 0412.20069 · doi:10.1002/mana.19790870111
[25] Kikkawa, M., On some quasigroups of algebraic models of symmetric spaces, Mem. Fac. Lit. Sci. Shimane Univ. (Nat. Sci.), 6, 9-13 (1973) · Zbl 0264.53028
[26] Kreuzer, A., Inner mappings of Bruck loops, Math. Proc. Camb. Philos. Soc., 123, 53-57 (1998) · Zbl 0895.20052 · doi:10.1017/S0305004197001771
[27] MacLane, S., Homology, Die Grundlehren der Mathematischen Wissenschaften (1963), Berlin: Springer, Berlin · Zbl 0133.26502
[28] Manara, CF; Marchi, M., On a class of reflection geometries, Istit. Lombardo Accad. Sci. Lett. Rend. A, 125, 203-217 (1991) · Zbl 0798.51017
[29] Movsisyan, Yu.M.: Introduction to the Theory of Algebras with Hyperidentities. Yerevan State University Press, Yerevan (1986) (in Russian) · Zbl 0675.08001
[30] Movsisyan, Yu.M.: On a theorem of Schauffler. Matematicheskie Zametki 53, 85-93 (1993). English transl. in Math. Notes 53, 85-93 (1993) · Zbl 0816.20066
[31] Movsisyan, Yu.M.: Hyperidentities in algebras and varieties. Uspekhi Mat. Nauk 53(1), 61-114 (1998) (in Russian). [English transl. in Russ. Math. Surv. 53(1), 57-108 (1998)] · Zbl 0921.08005
[32] Movsisyan, Yu.M., Hyperidentities and related concepts, I. Arm. J. Math 2, 146-222 (2017); Hyperidentities and related concepts, II. Arm. J. Math. 4, 1-85 (2018) · Zbl 1404.08001
[33] Murdoch, DC, Quasi-groups which satisfy certain generalized associative laws, Am. J. Math., 61, 509-522 (1939) · JFM 65.0077.01 · doi:10.2307/2371517
[34] Nagy, P.; Strambach, K., Loops, their cores and symmetric spaces, Israel J. Math., 105, 285-322 (1998) · Zbl 0909.20052 · doi:10.1007/BF02780335
[35] Nagy, GP; Vojtěchovský, P., The Moufang loops of order 64 and 81, J. Symb. Comput., 42, 871-883 (2007) · Zbl 1131.20053 · doi:10.1016/j.jsc.2007.06.004
[36] Nazari, E.; Movsisyan, YuM, Transitive modes, Demonstr. Math., 44, 511-522 (2011) · Zbl 1237.08001
[37] Pambuccian, V.: Two statements characterizing the Euclidean metric of a metric plane (submitted) · Zbl 1503.51014
[38] Pambuccian, V.; Struve, R., On M.T. Calapso’s characterization of the metric of an absolute plane, J. Geom., 92, 105-116 (2009) · Zbl 1169.51017 · doi:10.1007/s00022-008-2034-z
[39] Pflugfelder, HO, Quasigroups and Loops. Introduction. Sigma Series in Pure Mathematics, 7 (1990), Berlin: Heldermann Verlag, Berlin · Zbl 0715.20043
[40] Prażmowski, K.: Geometry over groups with central symmetries as the only involution. Mitt. Math. Sem. Univ. Gießen 193 (1989) · Zbl 0684.51002
[41] Robinson, DA, A loop-theoretic study of right-sided quasigroups, Ann. Soc. Sci. Bruxelles, 93, 1, 7-16 (1979) · Zbl 0414.20058
[42] Stanovský, D., A guide to self-distributive quasigroups, or Latin quandles, Quasigroups Related Syst., 23, 91-128 (2015) · Zbl 1328.20085
[43] Strecker, R., Über entropische Gruppoide, Math. Nachr., 64, 363-371 (1974) · Zbl 0294.20067 · doi:10.1002/mana.19740640124
[44] Vakarelov, D.: Algebraic foundations of central symmetry, of rotation and of homothety. Annuaire Univ. Sofia Fac. Math. 63, 121-166 (1968/1969) (in Bulgarian) · Zbl 0209.24001
[45] Volenec, V., Extension of Toyoda’s theorem on entropic groupoids, Math. Nachr., 102, 183-188 (1981) · Zbl 0484.20032 · doi:10.1002/mana.19811020115
[46] Volenec, V., Geometry of medial quasigroups, Rad Jugoslav. Akad. Znan. Umjet. No., 421, 79-91 (1986) · Zbl 0599.20112
[47] Volenec, V., Geometry of IM-quasigroups, Rad Hrvatske Akad. Znan. Umjet. No., 456, 139-146 (1991) · Zbl 0794.51010
[48] Takahashi, M., Abstract symmetric transformations, Tohoku Math. J., 49, 145-207 (1943) · Zbl 0061.02109
[49] Toyoda, K., On axioms of linear functions, Proc. Imp. Acad. Tokyo, 17, 221-227 (1941) · Zbl 0061.02403 · doi:10.3792/pia/1195578751
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.