×

On the minimal dimension of a finite simple group. (English) Zbl 1477.20028

Summary: Let \(G\) be a finite group and let \(\mathcal{M}\) be a set of maximal subgroups of \(G\). We say that \(\mathcal{M}\) is irredundant if the intersection of the subgroups in \(\mathcal{M}\) is not equal to the intersection of any proper subset. The minimal dimension of \(G\), denoted \(\mathrm{Mindim}(G)\), is the minimal size of a maximal irredundant set of maximal subgroups of \(G\). This invariant was recently introduced by Garonzi and Lucchini and they computed the minimal dimension of the alternating groups. In this paper, we prove that \(\mathrm{Mindim}(G) \le 3\) for all finite simple groups, which is best possible, and we compute the exact value for all non-classical simple groups. We also introduce and study two closely related invariants denoted by \(\alpha(G)\) and \(\beta(G)\). Here \(\alpha(G)\) (respectively \(\beta(G))\) is the minimal size of a set of maximal subgroups (respectively, conjugate maximal subgroups) of \(G\) whose intersection coincides with the Frattini subgroup of \(G\). Evidently, \(\mathrm{Mindim}(G) \le \alpha(G) \le\beta(G)\). For a simple group \(G\) we show that \(\beta(G) \le 4\) and \(\beta(G) - \alpha(G) \le 1\), and both upper bounds are best possible.

MSC:

20D05 Finite simple groups and their classification
20E28 Maximal subgroups

Software:

Magma

References:

[1] Aschbacher, M., On the maximal subgroups of the finite classical groups, Invent. Math., 76, 469-514 (1984) · Zbl 0537.20023
[2] Bosma, W.; Cannon, J.; Playoust, C., The Magma algebra system I: the user language, J. Symbolic Comput., 24, 235-265 (1997) · Zbl 0898.68039
[3] Bray, J. N.; Holt, D. F.; Roney-Dougal, C. M., The Maximal Subgroups of the Low-dimensional Finite Classical Groups, London Math. Soc. Lecture Note Series, vol. 407 (2013), Cambridge University Press · Zbl 1303.20053
[4] Burness, T. C., Fixed point ratios in actions of finite classical groups I, J. Algebra, 309, 69-79 (2007) · Zbl 1128.20003
[5] Burness, T. C., Fixed point ratios in actions of finite classical groups II, J. Algebra, 309, 80-138 (2007) · Zbl 1128.20004
[6] Burness, T. C., Fixed point ratios in actions of finite classical groups III, J. Algebra, 314, 693-748 (2007) · Zbl 1133.20003
[7] Burness, T. C., On base sizes for actions of finite classical groups, J. Lond. Math. Soc., 75, 545-562 (2007) · Zbl 1128.20005
[8] Burness, T. C.; Giudici, M., On the Saxl graph of a permutation group, Math. Proc. Cambridge Philos. Soc. (2019), in press
[9] Burness, T. C.; Guralnick, R. M.; Saxl, J., On base sizes for symmetric groups, Bull. Lond. Math. Soc., 44, 386-391 (2011) · Zbl 1222.20002
[10] Burness, T. C.; Guralnick, R. M.; Saxl, J., Base sizes for \(S\)-actions of finite classical groups, Israel J. Math., 199, 711-756 (2014) · Zbl 1321.20002
[11] Burness, T. C.; Guralnick, R. M.; Saxl, J., On base sizes for algebraic groups, J. Eur. Math. Soc. (JEMS), 19, 2269-2341 (2017) · Zbl 1445.20002
[12] T.C. Burness, R.M. Guralnick, J. Saxl, Base sizes for geometric actions of finite classical groups, in preparation. · Zbl 1321.20002
[13] Burness, T. C.; Harper, S., Finite groups, 2-generation and the uniform domination number, Israel J. Math. (2019), in press
[14] Burness, T. C.; Liebeck, M. W.; Shalev, A., Base sizes for simple groups and a conjecture of Cameron, Proc. Lond. Math. Soc., 98, 116-162 (2009) · Zbl 1179.20002
[15] Burness, T. C.; O’Brien, E. A.; Wilson, R. A., Base sizes for sporadic groups, Israel J. Math., 177, 307-333 (2010) · Zbl 1216.20008
[16] Carter, R. W., Finite Groups of Lie Type: Conjugacy Classes and Complex Characters (1985), John Wiley and Sons: John Wiley and Sons New York · Zbl 0567.20023
[17] Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A., Atlas of Finite Groups (1985), Oxford University Press · Zbl 0568.20001
[18] Detomi, E.; Lucchini, A., Maximal subgroups of finite soluble groups in general position, Ann. Mat. Pura Appl., 195, 1177-1183 (2016) · Zbl 1358.20012
[19] Fernando, R., On an inequality of dimension-like invariants for finite groups (2015), preprint
[20] Garonzi, M.; Lucchini, A., Maximal irredundant families of minimal size in the alternating group, Arch. Math. (Basel), 113, 119-126 (2019) · Zbl 1515.20107
[21] Goldstein, D.; Guralnick, R. M., Alternating forms and self-adjoint operators, J. Algebra, 308, 330-349 (2007) · Zbl 1111.11022
[22] Iwasawa, K., Über die endlichen Gruppen und die Verbände ihrer Untergruppen, J. Fac. Sci., Imp. Univ. Tokyo, Sect. I, 4, 171-199 (1941) · Zbl 0061.02503
[23] James, J. P., Partition actions of symmetric groups and regular bipartite graphs, Bull. Lond. Math. Soc., 38, 224-232 (2006) · Zbl 1159.20003
[24] James, J. P., Two point stabilisers of partition actions of linear groups, J. Algebra, 297, 453-469 (2006) · Zbl 1156.20314
[25] Kleidman, P. B.; Liebeck, M. W., The Subgroup Structure of the Finite Classical Groups, London Math. Soc. Lecture Note Series, vol. 129 (1990), Cambridge University Press · Zbl 0697.20004
[26] Lawther, R., Jordan block sizes of unipotent elements in exceptional algebraic groups, Comm. Algebra, 23, 4125-4156 (1995) · Zbl 0880.20034
[27] Lawther, R., Unipotent classes in maximal subgroups of exceptional algebraic groups, J. Algebra, 322, 270-293 (2009) · Zbl 1179.20041
[28] Lawther, R.; Saxl, J., On the actions of finite groups of Lie type on the cosets of subfield subgroups and their twisted analogues, Bull. Lond. Math. Soc., 21, 449-455 (1989) · Zbl 0691.20032
[29] Liebeck, M. W.; Saxl, J.; Seitz, G. M., Subgroups of maximal rank in finite exceptional groups of Lie type, Proc. Lond. Math. Soc., 65, 297-325 (1992) · Zbl 0776.20012
[30] Liebeck, M. W.; Seitz, G. M., Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras, Mathematical Surveys and Monographs, vol. 180 (2012), Amer. Math. Soc. · Zbl 1251.20001
[31] Liebeck, M. W.; Shalev, A., Simple groups, permutation groups, and probability, J. Amer. Math. Soc., 12, 497-520 (1999) · Zbl 0916.20003
[32] Lübeck, F., Centralizers and numbers of semisimple classes in exceptional groups of Lie type
[33] Thomas, A. R., The irreducible subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. (2019), in press
[34] Wagner, A., The minimal number of involutions generating some finite three-dimensional groups, Boll. Unione Mat. Ital., 15, 431-439 (1978) · Zbl 0401.20038
[35] Whiston, J., Maximal independent generating sets of the symmetric group, J. Algebra, 232, 255-268 (2000) · Zbl 0967.20001
[36] Whiston, J.; Saxl, J., On the maximal size of independent generating sets of \(PSL_2(q)\), J. Algebra, 258, 651-657 (2002) · Zbl 1023.20014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.