×

Base sizes for \(\mathcal S\)-actions of finite classical groups. (English) Zbl 1321.20002

Authors’ summary: Let \(G\) be a permutation group on a set \(\Omega\). A subset \(B\) of \(\Omega\) is a base for \(G\) if the pointwise stabilizer of \(B\) in \(G\) is trivial; the base size of \(G\) is the minimal cardinality of a base for \(G\), denoted by \(b(G)\). In this paper we calculate the base size of every primitive almost simple classical group with point stabilizer in Aschbacher’s collection \(\mathcal S\) of irreducibly embedded almost simple subgroups. In this situation we also establish strong asymptotic results on the probability that randomly chosen subsets of \(\Omega\) form a base for \(G\). Indeed, with some specific exceptions, we show that almost all pairs of points in \(\Omega\) are bases.

MSC:

20B15 Primitive groups
20G40 Linear algebraic groups over finite fields
20P05 Probabilistic methods in group theory
Full Text: DOI

References:

[1] M. Aschbacher, On the maximal subgroups of the finite classical groups, Inventiones Mathematicae 76 (1984), 469–514. · Zbl 0537.20023 · doi:10.1007/BF01388470
[2] M. Aschbacher and G. M. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Mathematical Journal 63 (1976), 1–91. · Zbl 0359.20014
[3] J. Bamberg, M. Giudici, M.W. Liebeck, C. E. Praeger and J. Saxl, The classification of almost simple 3 2 -transitive groups, Transactions of the American Mathematical Society 365 (2013), 4257–4311. · Zbl 1281.20002 · doi:10.1090/S0002-9947-2013-05758-3
[4] A. Bochert, Über die Zahl verschiedener Werte, die eine Funktion gegebener Buchstaben durch Vertauschung derselben erlangen kann, Mathematische Annalen 33 (1889), 584–590. · JFM 21.0141.01 · doi:10.1007/BF01444035
[5] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, Journal of Symbolic Computation 24 (1997), 235–265. · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[6] N. Bourbaki, Groupes et Algebrès de Lie (Chapters 4, 5 and 6), Hermann, Paris, 1968.
[7] J. N. Bray, D. F. Holt and C. M. Roney-Dougal, The Maximal Subgroups of the Lowdimensional Finite Classical Groups, LMS Lecture Note Series Vol. 407, London Mathematical Society Lecture Note Series, Cambridge University Press, 2013. · Zbl 1303.20053
[8] T. Breuer, Manual for the GAP Character Table Library, Version 1.1, RWTH Aachen, 2004.
[9] T. Breuer, GAP Computations with O +(8, 5).S 3 and O +(8, 2).S 3, RWTH Aachen, 2006; http://www.math.rwth-aachen.de/\(\sim\)Thomas.Breuer/ctbllib/htm/o8p2s3_o8p5s3.htm .
[10] T. C. Burness, Fixed point spaces in actions of classical algebraic groups, Journal of Group Theory 7 (2004), 311–346. · Zbl 1071.20040 · doi:10.1515/jgth.2004.011
[11] T. C. Burness, Fixed point ratios in actions of finite classical groups, II, Journal of Algebra 309 (2007), 80–138. · Zbl 1128.20004 · doi:10.1016/j.jalgebra.2006.05.025
[12] T. C. Burness, Fixed point ratios in actions of finite classical groups, IV, Journal of Algebra 314 (2007), 749–788. · Zbl 1133.20004 · doi:10.1016/j.jalgebra.2007.01.012
[13] T. C. Burness, On base sizes for actions of finite classical groups, Journal of the London Mathematical Society 75 (2007), 545–562. · Zbl 1128.20005 · doi:10.1112/jlms/jdm033
[14] T. C. Burness, R. M. Guralnick and J. Saxl, On base sizes for symmetric groups, The Bulletin of the London Mathematical Society 43 (2011), 386–391. · Zbl 1222.20002 · doi:10.1112/blms/bdq123
[15] T. C. Burness, R. M. Guralnick and J. Saxl, On base sizes for algebraic groups, preprint. · Zbl 1222.20002
[16] T. C. Burness, R. M. Guralnick and J. Saxl, Base sizes for geometric actions of finite classical groups, in preparation. · Zbl 1321.20002
[17] T. C. Burness, M. W. Liebeck and A. Shalev, Base sizes for simple groups and a conjecture of Cameron, Proceedings of the London Mathematical Society 98 (2009), 116–162. · Zbl 1179.20002 · doi:10.1112/plms/pdn024
[18] T. C. Burness, E. A. O’Brien and R. A. Wilson, Base sizes for sporadic simple groups, Israel Journal of Mathematics 177 (2010), 307–334. · Zbl 1216.20008 · doi:10.1007/s11856-010-0048-3
[19] T. C. Burness, C. E. Praeger and Á. Seress, Extremely primitive classical groups, Journal of Pure and Applied Algebra 216 (2012), 1580–1610. · Zbl 1260.20003 · doi:10.1016/j.jpaa.2011.10.028
[20] T. C. Burness, C. E. Praeger and Á. Seress, Extremely primitive sporadic and alternating groups, The Bulletin of the London Mathematical Society 44 (2012), 1147–1154. · Zbl 1264.20001 · doi:10.1112/blms/bds038
[21] P. J. Cameron and W. M. Kantor, Random permutations: some group-theoretic aspects, Combinatorics, Probability and Computing 2 (1993), 257–262. · Zbl 0823.20002 · doi:10.1017/S0963548300000651
[22] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Oxford University Press, 1985. · Zbl 0568.20001
[23] D. I. Deriziotis and G. Michler, Character table and blocks of the finite simple triality groups 3 D 4(q), Transactions of the American Mathematical Society 303 (1987), 39–70. · Zbl 0628.20014
[24] The GAP Group, GAP – Groups, Algorithms and Programming, Version 4.4, 2004.
[25] D. Goldstein and R. M. Guralnick, Alternating forms and self-adjoint operators, Journal of Algebra 308 (2007), 330–349. · Zbl 1111.11022 · doi:10.1016/j.jalgebra.2006.06.009
[26] D. Gorenstein and R. Lyons, The local structure of finite groups of characteristic 2 type, Memoirs of the American Mathematical Society 276 (1983). · Zbl 0519.20014
[27] D. Gorenstein, R. Lyons and R. Solomon, The Classification of the Finite Simple Groups, Number 3, Mathematical Surveys and Monographs, Vol. 40, American Mathematical Society, Providence, RI, 1998. · Zbl 0890.20012
[28] R. M. Guralnick and J. Saxl, Generation of finite almost simple groups by conjugates, Journal of Algebra 268 (2003), 519–571. · Zbl 1037.20016 · doi:10.1016/S0021-8693(03)00182-0
[29] G. Hiss and G. Malle, Low dimensional representations of quasi-simple groups, London Mathematical Society Journal of Computational Mathematics 4 (2001), 22–63. · Zbl 0979.20012
[30] G. Hiss and G. Malle, Corrigenda: Low dimensional representations of quasi-simple groups, London Mathematical Society Journal of Computational Mathematics 5 (2002), 95–126. · Zbl 1053.20504
[31] G. D. James, On the minimal dimensions of irreducible representations of symmetric groups, Mathematical Proceedings of the Cambridge Philosophical Society 94 (1983), 417–424. · Zbl 0544.20011 · doi:10.1017/S0305004100000803
[32] C. Jansen, K. Lux, R. Parker and R. Wilson, An Atlas of Brauer Characters, London Mathematical Society Monographs, Oxford University Press, 1995.
[33] P. B. Kleidman, The maximal subgroups of the finite 8-dimensional orthogonal groups P{\(\Omega\)} 8 + (q) and of their automorphism groups, Journal of Algebra 110 (1987), 173–242. · Zbl 0623.20031 · doi:10.1016/0021-8693(87)90042-1
[34] P. B. Kleidman and M. W. Liebeck, The Subgroup Structure of the Finite Classical Groups, London Mathematical Society Lecture Note Series, Vol. 129, Cambridge University Press, 1990. · Zbl 0697.20004
[35] V. Landazuri and G. M. Seitz, On the minimal degrees of projective representations of the finite Chevalley groups, Journal of Algebra 32 (1974), 418–443. · Zbl 0325.20008 · doi:10.1016/0021-8693(74)90150-1
[36] R. Lawther, M. W. Liebeck and G. M. Seitz, Fixed point ratios in actions of finite exceptional groups of Lie type, Pacific Journal of Mathematics 205 (2002), 393–464. · Zbl 1058.20001 · doi:10.2140/pjm.2002.205.393
[37] M. W. Liebeck, On the orders of maximal subgroups of the finite classical groups, Proceedings of the London Mathematical Society 50 (1985), 426–446. · Zbl 0591.20021 · doi:10.1112/plms/s3-50.3.426
[38] M. W. Liebeck and A. Shalev, Simple groups, permutation groups, and probability, Journal of the American Mathematical Society 12 (1999), 497–520. · Zbl 0916.20003 · doi:10.1090/S0894-0347-99-00288-X
[39] M. W. Liebeck and A. Shalev, Character degrees and random walks in finite groups of Lie type, Proceedings of the London Mathematical Society 90 (2005), 61–86. · Zbl 1077.20020 · doi:10.1112/S0024611504014935
[40] F. Lübeck, Small degree representations of finite Chevalley groups in defining characteristic, London Mathematical Society Journal of Computational Mathematics 4 (2001), 135–169. · Zbl 1053.20008
[41] A. Mann, C. E. Praeger and Á. Seress, Extremely primitive groups, Groups, Geometry, and Dynamics 1 (2007), 623–660. · Zbl 1141.20003 · doi:10.4171/GGD/27
[42] M. Neunhöffer, F. Noeske, E. A. O’Brien and R. A. Wilson, Orbit invariants and an application to the Baby Monster, Journal of Algebra 341 (2011), 297–305. · Zbl 1245.20015 · doi:10.1016/j.jalgebra.2011.05.033
[43] Á. Seress, Permutation Group Algorithms, Cambridge Tracts in Mathematics, Vol. 152, Cambridge University Press, Cambridge, 2003. · Zbl 1028.20002
[44] N. Spaltenstein, Caractères unipotents de 3 D 4( $\(\backslash\)mathbb{F}_q $ ), Commentarii Mathematici Helvetici 57 (1982), 676–691. · Zbl 0536.20025 · doi:10.1007/BF02565880
[45] A. Wagner, The faithful linear representations of least degree of S n and A n over a field of characteristic 2, Mathematische Zeitschrift 151 (1976), 127–137. · Zbl 0321.20008 · doi:10.1007/BF01213989
[46] A. Wagner, The faithful linear representations of least degree of S n and A n over a field of odd characteristic, Mathematische Zeitschrift 154 (1977), 103–114. · Zbl 0336.20008 · doi:10.1007/BF01241824
[47] A. Wagner, An observation on the degrees of projective representations of the symmetric and alternating groups over an arbitrary field, Archiv der Mathematik 29 (1977), 583–589. · Zbl 0383.20009 · doi:10.1007/BF01220457
[48] R. A. Wilson et al., A World-Wide-Web Atlas of finite group representations, http://brauer.maths.qmul.ac.uk/Atlas/v3/ .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.