×

Bifurcation and optimal harvesting of a diffusive predator-prey system with delays and interval biological parameters. (English) Zbl 1317.92068

The authors study a delayed reaction-diffusion three-species predator-prey system with harvesting. It has been demonstrated that introduction of discrete delays in the system causes a stability switch, and a Hopf bifurcation occurs as the delays exceed certain threshold values; this may eventually lead to the extinction of one of the species. The incorporation of the diffusion in the system also leads to the bifurcation of the solutions. Sufficient conditions for the local stability of the positive equilibrium are obtained, as well as conditions for the Hopf bifurcation. Numerical results illustrating theoretical findings are also presented.

MSC:

92D25 Population dynamics (general)
35B32 Bifurcations in context of PDEs
Full Text: DOI

References:

[1] Azar, C.; Holmberg, J.; Lindgren, K., Stability analysis of harvesting in a predator-prey model, J. Theor. Biol., 174, 1, 13-19 (1995)
[2] Bai, L.; Wang, K., A diffusive single-species model with periodic coefficients and its optimal harvesting policy, Appl. Math. Comput., 187, 2, 873-882 (2007) · Zbl 1112.92058
[3] Baurmann, M.; Gross, T.; Feudel, U., Instabilities in spatially extended predator-prey systemsspatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations, J. Theor. Biol., 245, 2, 220-229 (2007) · Zbl 1451.92248
[4] Beretta, E.; Kuang, Y., Convergence results in a well-known delayed predator-prey system, J. Math. Anal. Appl., 204, 3, 840-853 (1996) · Zbl 0876.92021
[5] Chang, X.; Wei, J., Hopf bifurcation and optimal control in a diffusive predator-prey system with time delay and prey harvesting, Lith. Assoc. Nonlinear Analysts, 17, 4, 379-409 (2012) · Zbl 1290.49077
[6] Chen, L.; Lu, Z.; Wang, W., The effect of delays on the permanence for Lotka-Volterra systems, Appl. Math. Lett., 8, 4, 71-73 (1995) · Zbl 0833.34071
[7] Fister, K.; Lenhart, S., Optimal harvesting in an age-structured predator-prey model, Appl. Math. Optim., 54, 1, 1-15 (2006) · Zbl 1102.49014
[8] He, X., Stability and delays in a predator-prey system, J. Math. Anal. Appl., 198, 2, 355-370 (1996) · Zbl 0873.34062
[9] Hu, Z.; Teng, Z.; Zhang, L., Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response, Nonlinear Anal.: Real World Appl., 12, 4, 2356-2377 (2011) · Zbl 1215.92063
[10] Kumar, S.; Srivastava, S.; Chingakham, P., Hopf bifurcation and stability analysis in a harvested one-predator-two-prey model, Appl. Math. Comput., 129, 1, 107-118 (2002) · Zbl 1017.92041
[11] Leung, A., Optimal harvesting-coefficient control of steady-state prey-predator diffusive Volterra-Lotka systems, Appl. Math. Optim., 31, 2, 219-241 (1995) · Zbl 0820.49011
[13] Liu, Z.; Yuan, R., Stability and bifurcation in a harvested one-predator-two-prey model with delays, Chaos Solitons Fractals, 27, 5, 1395-1407 (2006) · Zbl 1097.34051
[14] Lotka, A., Elements of Physical Biology. Applied Mathematical Sciences (September 1925), Williams and Wilkins Company: Williams and Wilkins Company Baltimore · JFM 51.0416.06
[15] Ma, Z.; Li, W.; Yan, X., Stability and Hopf bifurcation for a three-species food chain model with time delay and spatial diffusion, Appl. Math. Comput., 219, 5, 2713-2731 (2012) · Zbl 1308.92109
[16] Meng, X.; Chen, L., Almost periodic solution of non-autonomous Lotka-Volterra predator-prey dispersal system with delays, J. Theor. Biol., 243, 4, 562-574 (2006) · Zbl 1447.92355
[17] Pal, D.; Mahaptra, G.; Samanta, G., Optimal harvesting of prey-predator system with interval biological parametersa bioeconomic model, Math. Biosci., 241, 2, 181-187 (2013) · Zbl 1402.92362
[19] Sambath, M.; Gnanavel, S.; Balachandran, K., Stability and Hopf bifurcation of a diffusive predator-prey model with predator saturation and competition, Appl. Anal., 92, 12, 2451-2468 (2013) · Zbl 1284.35229
[20] So, J., A note on the global stability and bifurcation phenomenon of a Lotka-Volterra food chain, J. Theor. Biol., 80, 2, 185-187 (1979)
[21] Song, X.; Chen, L., Optimal harvesting and stability for a two-species competitive system with stage structure, Math. Biosci., 170, 2, 173-186 (2001) · Zbl 1028.34049
[22] Song, Y.; Wei, J., Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system, J. Math. Anal. Appl., 301, 1, 1-21 (2005) · Zbl 1067.34076
[23] Su, J.; Pan, J., Functional Analysis and Variational Calculus (1993), Press of Technology and Science University: Press of Technology and Science University Hefei
[24] Teng, Z.; Chen, L., Global asymptotic stability of periodic Lotka-Volterra systems with delays, Nonlinear Anal.: Theory Methods Appl., 45, 8, 1081-1095 (2001) · Zbl 0995.34071
[25] Tian, C.; Zhang, L., Hopf bifurcation analysis in a diffusive food-chain model with time delay, Comput. Math. Appl., 66, 10, 2139-2153 (2013) · Zbl 1348.35028
[26] Tian, Y.; Weng, P., Stability analysis of diffusive predator-prey model with modified Leslie-Gower and Holling-type {III} schemes, Appl. Math. Comput., 218, 7, 3733-3745 (2011) · Zbl 1238.92050
[27] Volterra, V., Fluctuations in the abundance of a species considered mathematically, Nature, 118, 1, 558-560 (1926) · JFM 52.0453.03
[28] Wei, F.; Wang, K., Global stability and asymptotically periodic solution for nonautonomous cooperative Lotka-Volterra diffusion system, Appl. Math. Comput., 182, 1, 161-165 (2006) · Zbl 1113.92062
[29] Wu, J., Theory and Applications of Partial Functional Differential Equations. Applied Mathematical Sciences (September 1996), Springer: Springer New York · Zbl 0870.35116
[30] Xu, C.; Liao, M., Bifurcation behaviours in a delayed three-species food-chain model with Holling type-ii functional response, Appl. Anal., 92, 12, 2480-2498 (2013) · Zbl 1307.34125
[31] Xu, R.; Chaplain, M.; Davidson, F., Periodic solution for a three-species Lotka-Volterra food-chain model with time delays, Math. Comput. Modell., 40, 7, 823-837 (2004) · Zbl 1067.92063
[32] Yan, X.; Zhang, C., Hopf bifurcation in a delayed Lokta-Volterra predator-prey system, Nonlinear Anal.: Real World Appl., 92, 1, 114-127 (2008) · Zbl 1149.34048
[33] Zaman, G.; Saker, S. H., Dynamics and control of a system of two non-interacting preys with common predator, Math. Methods Appl. Sci., 34, 18, 2259-2273 (2011) · Zbl 1229.92082
[34] Zhang, G.; Shen, Y.; Chen, B., Hopf bifurcation of a predator-prey system with predator harvesting and two delays, Nonlinear Dyn., 73, 4, 2119-2131 (2013) · Zbl 1281.92076
[35] Zhang, G.; Wang, W.; Wang, X., Coexistence states for a diffusive one-prey and two-predators model with b-d functional response, J. Math. Anal. Appl., 387, 2, 931-948 (2012) · Zbl 1230.92058
[36] Zhang, J.; Jin, Z.; Yan, J.; Sun, G., Stability and Hopf bifurcation in a delayed competition system, Nonlinear Anal.: Theory Methods Appl., 70, 2, 658-670 (2009) · Zbl 1166.34049
[37] Zuo, W., Global stability and Hopf bifurcations of a Beddington-DeAngelis type predator-prey system with diffusion and delays, Appl. Math. Comput., 223, 423-435 (2013) · Zbl 1329.92123
[38] Zuo, W.; Wei, J., Stability and Hopf bifurcation in a diffusive predator-prey system with delay effect, Nature, 12, 4, 1998-2011 (2011) · Zbl 1221.35053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.