×

On nonlocal mechanics of curved elastic beams. (English) Zbl 1476.74087

Summary: Curved beams are basic structural components of Nano-Electro-Mechanical-Systems (NEMS) whose design requires appropriate modelling of scale effects. In the present paper, the size-dependent static behaviour of curved elastic nano-beams is investigated by stress-driven nonlocal continuum mechanics. Axial strain and flexural curvature fields are integral convolutions between equilibrated axial force and bending moment fields and an averaging kernel. The nonlocal integral methodology formulated here is the generalization to curved structures of the treatment in [G. Romano and the first author, Int. J. Eng. Sci. 115, 14–27 (2017; Zbl 1423.74512)] confined to straight beams. The corresponding nonlocal differential problem, supplemented with non-standard boundary conditions, is highlighted and shown to lead to mathematically well-posed problems of nano-engineering. The theoretical predictions, exhibiting stiffening nonlocal behaviours, are therefore appropriate to significantly model a wide range of small-scale devices of nanotechnological interest. The nonlocal approach is exploited by analytically establishing size-dependent responses of curved elastic nano-sensors and nano-actuators that are driven by the small-scale characteristic parameter.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)

Citations:

Zbl 1423.74512

References:

[1] Abazari, A. M.; Safavi, S. M.; Rezazadeh, G.; Villanueva, L. G., Modelling the size effects on the mechanical properties of micro/nano structures, Sensors, 15, 28543-28562 (2015)
[2] Alfosail, F. K.; Hajjaj, A. Z.; Younis, M. I., Theoretical and experimental investigation of two-to-one internal resonance in MEMS Arch resonators, Journal of Computational and Nonlinear Dynamics,Transactions of the ASME, 14, 011001 (2019)
[3] Apuzzo, A.; Barretta, R.; Faghidian, S. A.; Luciano, R.; Marotti de Sciarra, F., Free vibrations of elastic beams by modified nonlocal strain gradient theory, International Journal of Engineering Science, 133, 99-108 (2018) · Zbl 1423.74382
[4] Apuzzo, A.; Barretta, R.; Faghidian, S. A.; Luciano, R.; Marotti de Sciarra, F., Nonlocal strain gradient exact solutions for functionally graded inflected nano-beams, Composites Part B, 164, 667-674 (2019)
[5] Apuzzo, A.; Barretta, R.; Luciano, R.; Marotti de Sciarra, F.; Penna, R., Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model, Composites Part B, 123, 105-111 (2017)
[6] Arefi, M.; Bidgoli, E. M.-R.; Dimitri, R.; Bacciocchi, M.; Tornabene, F., Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets, Composites Part B, 166, 1-12 (2019)
[7] Aya, S. A.; Tufekci, E., Modeling and analysis of out-of-plane behavior of curved nanobeams based on nonlocal elasticity, Composites Part B, 119, 184-195 (2017)
[8] Baldacci, R., Scienza delle Costruzioni, Vol. II (1983), UTET: UTET Torino
[9] Barbagallo, G.; Madeo, A.; D’Agostino, M. V.; Abreu, R.; Ghiba, I.-D.; Neff, P., Transparent anisotropy for the relaxed micromorphic model: Macroscopic consistency conditions and long wave length asymptotics, International Journal of Solids and Structures, 120, 7-30 (2017)
[10] Barretta, R.; Canadija, M.; Feo, L.; Luciano, R.; Marotti de Sciarra, F.; Penna, R., Exact solutions of inflected functionally graded nano-beams in integral elasticity, Composites Part B, 142, 273-286 (2018)
[11] Barretta, R.; Canadija, M.; Luciano, R.; Marotti de Sciarra, F., Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams, International Journal of Engineering Science, 126, 53-67 (2018) · Zbl 1423.74457
[12] Barretta, R.; Diaco, M.; Feo, L.; Luciano, R.; Marotti de Sciarra, F.; Penna, R., Stress-driven integral elastic theory for torsion of nano-beams, Mechanics Research Communications, 87, 35-41 (2018)
[13] Barretta, R., Fabbrocino, F., Luciano, R., Marotti de Sciarra, F., & Ruta, G. (2019). Buckling loads of nano-beams in stress-driven nonlocal elasticity. In press. 10.1080/15376494.2018.1501523.; Barretta, R., Fabbrocino, F., Luciano, R., Marotti de Sciarra, F., & Ruta, G. (2019). Buckling loads of nano-beams in stress-driven nonlocal elasticity. In press. 10.1080/15376494.2018.1501523. · Zbl 1406.74008
[14] Barretta, R.; Faghidian, S. A.; Luciano, R., Longitudinal vibrations of nano-rods by stress-driven integral elasticity, Mechanics of Advanced Materials and Structures, 26, 15, 1307-1315 (2019)
[15] Barretta, R.; Faghidian, S. A.; Marotti de Sciarra, F., Stress-driven nonlocal integral elasticity for axisymmetric nano-plates, International Journal of Engineering Science, 136, 38-52 (2019) · Zbl 1425.74055
[16] Barretta, R.; Luciano, R.; Marotti de Sciarra, F.; Ruta, G., Stress-driven nonlocal integral model for timoshenko elastic nano-beams, European Journal of Mechanics - A/Solids, 72, 275-286 (2018) · Zbl 1406.74008
[17] Barretta, R.; Marotti de Sciarra, F., Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams, International Journal of Engineering Science, 130, 187-198 (2018) · Zbl 1423.74458
[18] Barretta, R.; Marotti de Sciarra, F., Variational nonlocal gradient elasticity for nano-beams, International Journal of Engineering Science, 143, 73-91 (2019) · Zbl 1476.74008
[19] Challamel, N.; Wang, C. M., The small length scale effect for a non-local cantilever beam: a paradox solved, Nanotechnology, 19, 345703 (2008)
[20] Chorsi, M. T.; Chorsi, H. T., Modeling and analysis of MEMS disk resonators, Microsystem Technologies, 24, 6, 2517-2528 (2018)
[21] Dantas, W. G.; Gusso, A., Analysis of the chaotic dynamics of MEMS/NEMS doubly clamped beam resonators with two-sided electrodes, International Journal of Bifurcation and Chaos, 28, 10, 1850122 (2018)
[22] Dehrouyeh-Semnani, A. M.; Nikkhah-Bahrami, M.; Yazdi, M. R.H., On nonlinear vibrations of micropipes conveying fluid, International Journal of Engineering Science, 117, 20-33 (2017) · Zbl 1423.74387
[23] Dehrouyeh-Semnani, A. M.; Nikkhah-Bahrami, M.; Yazdi, M. R.H., On nonlinear stability of fluid-conveying imperfect micropipes, International Journal of Engineering Science, 120, 254-271 (2017) · Zbl 1423.76133
[24] Ding, H.; Ma, Y.; Guan, Y.; Ju, B.-F.; Xie, J., Duplex mode tilt measurements based on a MEMS biaxial resonant accelerometer, Sensors and Actuators, A: Physical, 296, 222-234 (2019)
[25] Ebrahimi, F.; Barati, M. R., A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams, Composite Structures, 159, 174-182 (2017)
[26] Ebrahimi, F.; Barati, M. R., Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain-electric field gradient theory, Mechanics of Advanced Materials and Structures, 25, 4, 350-359 (2018)
[27] Eringen, A. C., Linear theory of nonlocal elasticity and dispersion of plane waves, International Journal of Engineering Science, 10, 5, 425-435 (1972) · Zbl 0241.73005
[28] Eringen, A. C., On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, 54, 4703 (1983)
[29] Eringen, A. C., Theory of nonlocal elasticity and some applications, Res Mechanica, 21, 313-342 (1987)
[30] Farokhi, H.; Ghayesh, M. H., Nonlinear mechanics of electrically actuated microplates, International Journal of Engineering Science, 123, 197-213 (2018) · Zbl 1423.74541
[31] Farokhi, H.; Ghayesh, M. H., Viscoelasticity effects on resonant response of a shear deformable extensible microbeam, Nonlinear Dynamics, 87, 391-406 (2018) · Zbl 1371.74068
[32] Farokhi, H.; Ghayesh, M. H., Nonlinear mechanical behaviour of microshells, International Journal of Engineering Science, 127, 127-144 (2018) · Zbl 1423.74572
[33] Farokhi, H.; Ghayesh, M. H.; Gholipour, A.; Hussain, S., Motion characteristics of bilayered extensible timoshenko microbeams, International Journal of Engineering Science, 112, 1-17 (2017) · Zbl 1423.74475
[34] Fernández-Sáez, J.; Zaera, R., Vibrations of Bernoulli-Euler beams using the two-phase nonlocal elasticity theory, International Journal of Engineering Science, 119, 232-248 (2017) · Zbl 1423.74476
[35] Fernández-Sáez, J.; Zaera, R.; Loya, J. A.; Reddy, J. N., Bending of Euler-Bernoulli beams using Eringen’s integral formulation: A paradox resolved, International Journal of Engineering Science, 99, 107-116 (2016) · Zbl 1423.74477
[36] Frangi, A.; Gobat, G., Reduced order modelling of the non-linear stiffness in MEMS resonators, International Journal of Non-Linear Mechanics, 116, 211-218 (2019)
[37] Fuschi, P.; Pisano, A. A.; Polizzotto, C., Size effects of small-scale beams in bending addressed with a strain-difference based nonlocal elasticity theory, International Journal of Mechanical Sciences, 151, 661-671 (2019)
[38] Ganapathi, M.; Polit, O., Dynamic characteristics of curved nanobeams using nonlocal higher-order curved beam theory, Physica E, 91, 190-202 (2017)
[39] Ghayesh, M. H., Viscoelastic dynamics of axially FG microbeams, International Journal of Engineering Science, 135, 75-85 (2019) · Zbl 1423.74187
[40] Ghayesh, M. H.; Farajpour, A., A review on the mechanics of functionally graded nanoscale and microscale structures, International Journal of Engineering Science, 137, 8-36 (2019) · Zbl 1425.74358
[41] Ghayesh, M. H.; Farokhi, H., Parametric vibrations of imperfect timoshenko microbeams, Microsystem Technologies, 23, 4917-4929 (2017)
[42] Ghayesh, M. H.; Farokhi, H., Nonlinear mechanics of doubly curved shallow microshells, International Journal of Engineering Science, 119, 288-304 (2017) · Zbl 1423.74131
[43] Ghayesh, M. H.; Farokhi, H.; Gholipour, A.; Tavallaeinejad, M., Nonlinear oscillations of functionally graded microplates, International Journal of Engineering Science, 122, 56-72 (2018)
[44] Karami, B.; Shahsavari, D.; Janghorban, M., On the dynamics of porous doubly-curved nanoshells, International Journal of Engineering Science, 143, 39-55 (2019) · Zbl 1476.74031
[45] Karami, B.; Shahsavari, D.; Janghorban, M.; Li, L., Influence of homogenization schemes on vibration of functionally graded curved microbeams, Composite Structures, 216, 67-79 (2019)
[46] Khaniki, H. B., On vibrations of FG nanobeams, International Journal of Engineering Science, 135, 23-36 (2019) · Zbl 1423.74397
[47] Khorshidi, M. A., The material length scale parameter used in couple stress theories is not a material constant, International Journal of Engineering Science, 133, 15-25 (2018)
[48] Kurmendra; Rahul, J.; Kumar, R., Micro-cantilevered MEMS biosensor for detection of malaria protozoan parasites, Journal of Computational Applied Mechanics, 50, 1, 99-107 (2019)
[49] Kurmendra; Kumar, R., MEMS based cantilever biosensors for cancer detection using potential bio-markers present in VOCs: A survey, Microsystem Technologies, 25, 9, 3253-3267 (2019)
[50] Lekha, C. S.C.; Kumar, A. S.; Vivek, S.; Rasi, U. P.M.; Saravanan, K. V.; Nandakumar, K.; Nair, S. S., High voltage generation from lead-free magnetoelectric coaxial nanotube arrays and their applications in nano energy harvesters, Nanotechnology, 28, 5, 055402 (2017)
[51] Li, C.; Yao, L.; Chen, W.; Li, S., Comments on nonlocal effects in nano-cantilever beams, International Journal of Engineering Science, 87, 47-57 (2015)
[52] Lim, C. W.; Zhang, G.; Reddy, J. N., A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, Journal of the Mechanics and Physics of Solids, 78, 298-313 (2015) · Zbl 1349.74016
[53] Neff, P.; Madeo, A.; Barbagallo, G.; D’Agostino, M. V.; Abreu, R.; Ghiba, I.-D., Real wave propagation in the isotropic-relaxed micromorphic model, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473, 20160790 (2017) · Zbl 1404.82028
[54] Nikpourian, A.; Ghazavi, M. R.; Azizi, S., Size-dependent secondary resonance of a piezoelectrically laminated bistable MEMS arch resonator, Composites Part B, 173, 106850 (2019)
[55] Oskouie, M. F.; Ansari, R.; Rouhi, H., Bending of Euler-Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach, Acta Mechanica Sinica (2018) · Zbl 1460.74053
[56] Ouakad, H. M.; Najar, F., Nonlinear dynamics of MEMS arches assuming out-of-plane actuation arrangement, Journal of Vibration and Acoustics, Transactions of the ASME, 141, 4, 041010 (2019)
[57] Ouakad, H. M.; Sedighi, H. M., Static response and free vibration of MEMS arches assuming out-of-plane actuation pattern, International Journal of Non-Linear Mechanics, 110, 44-57 (2019)
[58] Peddieson, J.; Buchanan, G. R.; McNitt, R. P., Application of nonlocal continuum models to nanotechnology, International Journal of Engineering Science, 41, 3-5, 305-312 (2003)
[59] Polit, O.; Merzouki, T.; Ganapathi, M., Elastic stability of curved nanobeam based on higher-order shear deformation theory and nonlocal analysis by finite element approach, Finite Elements in Analysis and Design, 146, 1-15 (2018)
[60] Rezaiee-Pajand, M.; Rajabzadeh-Safaei, N., Nonlocal static analysis of a functionally graded material curved nanobeam, Mechanics of Advanced Materials and Structures, 25, 7, 539-547 (2018)
[61] Romano, G., Scienza delle Costruzioni, Tomo I (2002), Hevelius: Hevelius Benevento
[62] Romano, G.; Barretta, R., Comment on the paper ‘Exact solution of Eringen’s nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams’ by Meral Tuna & Mesut Kirca, International Journal of Engineering Science, 109, 240-242 (2016) · Zbl 1423.74511
[63] Romano, G.; Barretta, R., Nonlocal elasticity in nanobeams: the stress-driven integral model, International Journal of Engineering Science, 115, 14-27 (2017) · Zbl 1423.74512
[64] Romano, G.; Barretta, R.; Diaco, M., Micromorphic continua: non-redundant formulations, Continuum Mechanics and Thermodynamics, 28, 1659-1670 (2016) · Zbl 1365.74135
[65] Romano, G.; Barretta, R.; Diaco, M., On nonlocal integral models for elastic nano-beams, International Journal of Mechanical Sciences, 131-132, 490-499 (2017)
[66] Romano, G.; Barretta, R.; Diaco, M.; Marotti de Sciarra, F., Constitutive boundary conditions and paradoxes in nonlocal elastic nano-beams, International Journal of Mechanical Sciences, 121, 151-156 (2017)
[67] Salim, M.; Salim, D.; Chandran, D.; Aljibori, H. S.; Kherbeet, A. S., Review of nano piezoelectric devices in biomedicine applications, Journal of Intelligent Material Systems and Structures, 29, 10, 2105-2121 (2018)
[68] Sedighi, H. M.; Koochi, A.; Keivani, M.; Abadyan, M., Measurement, Journal of the International Measurement Confederation, 111, 114-121 (2017)
[69] She, G.-L.; Ren, Y.-R.; Yan, K. M., On snap-buckling of porous FG curved nanobeams, Acta Astronautica, 161, 475-484 (2019)
[70] She, G.-L.; Yuan, F.-G.; Karami, B.; Ren, Y.-R.; Xiao, W. S., On nonlinear bending behavior of FG porous curved nanotubes, International Journal of Engineering Science, 135, 58-74 (2019) · Zbl 1423.74352
[71] Sieberer, S.; McWilliam, S.; Popov, A. A., Nonlinear electrostatic effects in MEMS ring-based rate sensors under shock excitation, International Journal of Mechanical Sciences, 157-158, 485-497 (2019)
[72] Sobhy, M.; Abazid, M. A., Dynamic and instability analyses of FG graphene-reinforced sandwich deep curved nanobeams with viscoelastic core under magnetic field effect, Composites Part B, 174, 106966 (2019)
[73] Sourki, R.; Hosseini, S. A., Coupling effects of nonlocal and modified couple stress theories incorporating surface energy on analytical transverse vibration of a weakened nanobeam, European Physical Journal Plus, 132, 4, 184 (2017)
[74] Taati, E., On buckling and post-buckling behavior of functionally graded micro-beams in thermal environment, International Journal of Engineering Science, 128, 63-78 (2018) · Zbl 1423.74355
[75] Wang, Y.; Zhu, X.; Dai, H., Exact solutions for the static bending of Euler-Bernoulli beams using Eringen two-phase local/nonlocal model, AIP Advances, 6, 8, 085114 (2016)
[76] Wang, Z.; Ren, J., Three-to-one internal resonance in MEMS arch resonators, Sensors, 19, 8, 1888 (2019)
[77] Winkler, E., Formänderung und festigkeit gekrümmter körper, insbesondere der ringe, Civilingenieur, 4, 232-246 (1858)
[78] Yang, F.; Chong, A.; Lam, D. C.; Tong, P., Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, 39, 2731-2743 (2002) · Zbl 1037.74006
[79] Zhang, P.; Qing, H.; Gao, C., Theoretical analysis for static bending of circular Euler-Bernoulli beam using local and Eringen’s nonlocal integral mixed model, ZAMM (2019) · Zbl 07785951
[80] Zhu, X. W.; Wang, Y. B.; Dai, H. H., Buckling analysis of Euler-Bernoulli beams using Eringen’s two-phase nonlocal model, International Journal of Engineering Science, 116, 130-140 (2017) · Zbl 1423.74360
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.