×

Stress-driven nonlocal integral elasticity for axisymmetric nano-plates. (English) Zbl 1425.74055

Summary: The stress-driven nonlocal integral model of elasticity for 1D nano-structures [G. Romano and R. Barretta, Int. J. Eng. Sci. 115, 14–27 (2017; Zbl 1423.74512)] is extended in this paper to Kirchhoff axisymmetric nano-plates. The nonlocal formulation, relating elastic principal flexural curvatures and moments, provides an effective methodology to assess size effects in 2D nano-structures. The associated elastostatic problem of nano-plates is conveniently expressed by differential relations equipped with constitutive boundary conditions involving nonlocal curvature fields. The proposed approach is illustrated by examining case-studies of engineering interest. In particular, nonlocal displacement solutions of axisymmetric nano-plates are detected for a variety of loading systems and kinematic boundary conditions. Merits and implications of the stress-driven strategy are elucidated by comparing the achieved results with those of the strain gradient model of elasticity generated by Reissner’s variational principle. The outcomes can be useful for design and optimization of plate-like components of ground-breaking Nano-Electro-Mechanical-Systems (NEMS).

MSC:

74B05 Classical linear elasticity

Citations:

Zbl 1423.74512
Full Text: DOI

References:

[1] Acierno, S.; Barretta, R.; Luciano, R.; Marotti de Sciarra, F.; Russo, P., Experimental evaluations and modeling of the tensile behavior of polypropylene/single-walled carbon nanotubes fibers, Composite Structures, 174, 12-18 (2017)
[2] Aifantis, E. C., On the role of gradients in the localization of deformation and fracture, International Journal of Engineering Science, 3, 10, 1279-1299 (1992) · Zbl 0769.73058
[3] Apuzzo, A.; Barretta, R.; Canadija, M.; Feo, L.; Luciano, R.; Marotti de Sciarra, F., A closed-form model for torsion of nanobeams with an enhanced nonlocal formulation, Composites Part B, 108, 315-324 (2017)
[4] Apuzzo, A.; Barretta, R.; Luciano, R.; Marotti de Sciarra, F.; Penna, R., Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model, Composites Part B, 123, 105-111 (2017)
[5] Apuzzo, A.; Barretta, R.; Faghidian, S. A.; Luciano, R.; Marotti de Sciarra, F., Free vibrations of elastic beams by modified nonlocal strain gradient theory, International Journal of Engineering Science, 133, 99-108 (2018) · Zbl 1423.74382
[6] Apuzzo, A.; Barretta, R.; Fabbrocino, F.; Faghidian, S. A.; Luciano, R.; Marotti de Sciarra, F., Axial and torsional free vibrations of elastic nano-beams by stress-driven two-phase elasticity, Journal of Applied and Computational Mechanics (2019), article in press
[7] Askari, H.; Jamshidifar, H.; Fidan, B., High resolution mass identification using nonlinear vibrations of nanoplates, Measurement, 101, 166-174 (2017)
[8] Attia, M. A.; Abdel Rahman, A. A., On vibrations of functionally graded viscoelastic nanobeams with surface effects, International Journal of Engineering Science, 127, 1-32 (2018) · Zbl 1423.74383
[9] Barati, M. R.; Shahverdi, H., Vibration analysis of multi-phase nanocrystalline silicon nanoplates considering the size and surface energies of nanograins/nanovoids, International Journal of Engineering Science, 119, 128-141 (2017)
[10] Barretta, R.; Marotti de Sciarra, F., Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams, International Journal of Engineering Science, 130, 187-198 (2018) · Zbl 1423.74458
[11] Barretta, R.; Feo, L.; Luciano, R.; Marotti de Sciarra, F.; Penna, R., Functionally graded Timoshenko nanobeams: A novel nonlocal gradient formulation, Composites Part B, 100, 208-219 (2016)
[12] Barretta, R.; Feo, L.; Luciano, R.; Marotti de Sciarra, F., Application of an enhanced version of the Eringen differential model to nanotechnology, Composites Part B, 96, 274-280 (2016)
[13] Barretta, R.; Brcic, M.; Canadija, M.; Luciano, R.; Marotti de Sciarra, F., Application of gradient elasticity to armchair carbon nanotubes: Size effects and constitutive parameters assessment, European Journal of Mechanics - A/Solids, 65, 1-13 (2017) · Zbl 1406.74373
[14] Barretta, R.; Canadija, M.; Feo, L.; Luciano, R.; Marotti de Sciarra, F.; Penna, R., Exact solutions of inflected functionally graded nano-beams in integral elasticity, Composites Part B, 142, 273-286 (2018)
[15] Barretta, R.; Canadija, M.; Luciano, R.; Marotti de Sciarra, F., Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams, International Journal of Engineering Science, 126, 53-67 (2018) · Zbl 1423.74457
[16] Barretta, R.; Diaco, M.; Feo, L.; Luciano, R.; Marotti de Sciarra, F.; Penna, R., Stress-driven integral elastic theory for torsion of nano-beams, Mechanics Research Communications, 87, 35-41 (2018)
[17] Barretta, R.; Faghidian, S. A.; Luciano, R., Longitudinal vibrations of nanorods by stressdriven integral elasticity, Mechanics of Advanced Materials and Structures (2018), article in press
[18] Barretta, R.; Fazelzadeh, S. A.; Feo, L.; Ghavanloo, E.; Luciano, R., Nonlocal inflected nano-beams: A stress-driven approach of bi-Helmholtz type, Composite Structures, 200, 239-245 (2018)
[19] Barretta, R.; Luciano, R.; Marotti de Sciarra, F.; Ruta, G., Stress-driven nonlocal integral model for Timoshenko elastic nano-beams, European Journal of Mechanics - A/Solids, 72, 275-286 (2018) · Zbl 1406.74008
[20] Barretta, R.; Fabbrocino, F.; Luciano, R.; Marotti de Sciarra, F., Closed-form solutions in stress-driven two-phase integral elasticity for bending of functionally graded nano-beams, Physica E, 97, 13-30 (2018)
[21] Caplins, B. W.; Holm, J. D.; Keller, R. R., Transmission imaging with a programmable detector in a scanning electron microscope, Ultramicroscopy, 196, 40-48 (2019)
[22] Chen, Z.; Shan, A.; Ye, H.; Cui, Y.; Wang, R.; Chen, C., Ultrathin \(Ni_{12}P_5\) nanoplates for supercapacitor applications, Journal of Alloys and Compounds, 782, 545-555 (2019)
[23] Collin, F.; Caillerie, D.; Chambon, R., Analytical solutions for the thick-walled cylinder problem modeled with an isotropic elastic second gradient constitutive equation, International Journal of Solids and Structures, 46, 22-23, 3927-3937 (2009) · Zbl 1183.74082
[24] Demir, Ç.; Civalek, Ö., On the analysis of microbeams, International Journal of Engineering Science, 121, 14-33 (2017) · Zbl 1423.74470
[25] Despotovic, N., Stability and vibration of a nanoplate under body force using nonlocal elasticity theory, Acta Mechanica, 229, 1, 273-284 (2018) · Zbl 1381.74101
[26] Ebrahimi, F.; Barati, M. R.; Dabbagh, A., A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates, International Journal of Engineering Science, 107, 169-182 (2016)
[27] Eringen, A. C., On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, 54, 4703-4710 (1983)
[28] Faghidian, S. A., Reissner stationary variational principle for nonlocal strain gradient theory of elasticity, European Journal of Mechanics - A/Solids, 70, 115-126 (2018) · Zbl 1406.74102
[29] Faghidian, S. A., On non-linear flexure of beams based on non-local elasticity theory, International Journal of Engineering Science, 124, 49-63 (2018) · Zbl 1423.74471
[30] Faghidian, S. A., Integro-differential nonlocal theory of elasticity, International Journal of Engineering Science, 129, 96-110 (2018) · Zbl 1423.74125
[31] Farajpour, A.; Ghayesh, M. H.; Farokhi, H., A review on the mechanics of nanostructures, International Journal of Engineering Science, 133, 231-263 (2018) · Zbl 1423.74693
[32] Farokhi, H.; Ghayesh, M. H.; Gholipour, A.; Tavallaeinejad, M., Nonlinear oscillations of viscoelastic microplates, International Journal of Engineering Science, 118, 56-69 (2017) · Zbl 1423.74185
[33] Farokhi, H.; Ghayesh, M. H., On the dynamics of imperfect shear deformable microplates, International Journal of Engineering Science, 133, 264-283 (2018) · Zbl 1423.74542
[34] Fernández-Sáez, J.; Zaera, R.; Loya, J. A.; Reddy, J. N., Bending of Euler-Bernoulli beams using Eringen’s integral formulation: A paradox resolved, International Journal of Engineering Science, 99, 107-116 (2016) · Zbl 1423.74477
[35] Fernández-Sáez, J.; Zaera, R., Vibrations of Bernoulli-Euler beams using the two-phase nonlocal elasticity theory, International Journal of Engineering Science, 119, 232-248 (2017) · Zbl 1423.74476
[36] Fernández-Sáez, J.; Morassi, A.; Rubioc, L.; Zaera, R., Transverse free vibration of resonant nanoplate mass sensors: Identification of an attached point mass, International Journal of Mechanical Sciences, 150, 217-225 (2019)
[37] Fuschi, P.; Pisano, A. A.; Polizzotto, C., Size effects of small-scale beams in bending addressed with a strain-difference based nonlocal elasticity theory, International Journal of Mechanical Sciences, 151, 661-671 (2019)
[38] Ghayesh, M. H., Dynamics of functionally graded viscoelastic microbeams, International Journal of Engineering Science, 124, 115-131 (2018) · Zbl 1423.74186
[39] Ghayesh, M. H., Viscoelastic dynamics of axially FG microbeams, International Journal of Engineering Science, 135, 75-85 (2019) · Zbl 1423.74187
[40] Ghayesh, M. H.; Farajpour, A., Nonlinear mechanics of nanoscale tubes via nonlocal strain gradient theory, International Journal of Engineering Science, 129, 84-95 (2018) · Zbl 1423.74130
[41] Ghayesh, M. H.; Farajpour, A., A review on the mechanics of functionally graded nanoscale and microscale structures, International Journal of Engineering Science, 137, 8-36 (2019) · Zbl 1425.74358
[42] Ghayesh, M. H.; Farokhi, H., On the viscoelastic dynamics of fluid-conveying microtubes, International Journal of Engineering Science, 127, 186-200 (2018) · Zbl 1423.76034
[43] Ghayesh, M. H.; Farokhi, H.; Farajpour, A., Global dynamics of fluid conveying nanotubes, International Journal of Engineering Science, 135, 37-57 (2019) · Zbl 1423.76469
[44] Gousias, N.; Lazopoulos, A. K., Axisymmetric bending of strain gradient elastic circular thin plates, Archive of Applied Mechanics, 85, 11, 1719-1731 (2015) · Zbl 1347.74055
[45] Ji, X.; Li, A.; Zhou, S., A comparison of strain gradient theories with applications to the functionally graded circular micro-plate, Applied Mathematical Modelleing, 49, 124-143 (2017) · Zbl 1480.74206
[46] Jiao, P.; Alavi, A. H., Buckling analysis of graphene-reinforced mechanical metamaterial beams with periodic webbing patterns, International Journal of Engineering Science, 131, 1-18 (2018) · Zbl 1423.74340
[47] Hadi, A.; ZamaniNejad, M.; Hosseini, M., Vibrations of three-dimensionally graded nanobeams, International Journal of Engineering Science, 128, 12-23 (2018) · Zbl 1423.74394
[48] Kalanur, S. S.; Yoo, I.-H.; Seo, H., Pd on \(MoO_3\) nanoplates as small-polaron-resonant eye-readable gasochromic and electrical hydrogen sensor, Sensors and Actuators B: Chemical, 247, 357-365 (2017)
[49] Khaniki, H. B., On vibrations of nanobeam systems, International Journal of Engineering Science, 124, 85-103 (2018) · Zbl 1423.74396
[50] Khaniki, H. B., On vibrations of FG nanobeams, International Journal of Engineering Science, 135, 23-36 (2019) · Zbl 1423.74397
[51] Khaniki, H. B.; Hosseini-Hashemi, S., Dynamic response of biaxially loaded double-layer viscoelastic orthotropic nanoplate system under a moving nanoparticle, International Journal of Engineering Science, 115, 51-72 (2017) · Zbl 1423.74534
[52] Kim, C. I.; Zeidi, M., Gradient elasticity theory for fiber composites with fibers resistant to extension and flexure, International Journal of Engineering Science, 131, 80-99 (2018) · Zbl 1423.74215
[53] Lazopoulos, K. A., On the gradient strain elasticity theory of plates, European Journal of Mechanics · Zbl 1058.74570
[54] Lazopoulos, K. A., On bending of strain gradient elastic micro-plates, Mechanics Research Communications, 36, 777-783 (2009) · Zbl 1273.74173
[55] Li, C.; Liu, J. J.; Cheng, M.; Fan, X. L., Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces, Composites Part B, 116, 153-169 (2017)
[56] Li, X.; Li, H.; Liu, T.; Hei, Y.; Hassan, M.; Zhang, S., The biomass of ground cherry husks derived carbon nanoplates for electrochemical sensing, Sensors and Actuators B: Chemical, 255, 3248-3256 (2018)
[57] Li, L.; Tang, H.; Hu, Y., The effect of thickness on the mechanics of nanobeams, International Journal of Engineering Science, 123, 81-91 (2018) · Zbl 1423.74497
[58] Lu, L.; Guo, X.; Zhao, J., Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory, International Journal of Engineering Science, 116, 12-24 (2017) · Zbl 1423.74499
[59] Lu, L.; Guo, X.; Zhao, J., On the mechanics of Kirchhoff and Mindlin plates incorporating surface energy, International Journal of Engineering Science, 124, 24-40 (2018) · Zbl 1423.74548
[60] Lurie, S.; Solyaev, Y., Revisiting bending theories of elastic gradient beams, International Journal of Engineering Science, 126, 1-21 (2018) · Zbl 1423.74500
[61] Mahmoudpour, E.; Hosseini-Hashemi, S. H.; Faghidian, S. A., Non-linear vibration analysis of FG nano-beams resting on elastic foundation in thermal environment using stress-driven nonlocal integral model, Applied Mathematical Modelling, 57, 302-315 (2018) · Zbl 1480.74118
[62] Medina, L.; Gilat, R.; Krylov, S., Bistability criterion for electrostatically actuated initially curved micro plates, International Journal of Engineering Science, 130, 75-92 (2018) · Zbl 1423.74314
[63] Mirsalehi, M.; Azhari, M.; Amoushahi, H., Buckling and free vibration of the FGM thin micro-plate based on the modified strain gradient theory and the spline finite strip method, European Journal of Mechanics · Zbl 1406.74313
[64] Mousavi, S. M.; Paavola, J., Analysis of plate in second strain gradient elasticity, Archive of Applied Mechanics, 84, 8, 1135-1143 (2014) · Zbl 1341.74113
[65] Nath, N. C.D.; Jeon, I.-Y.; Ju, M. J.; Ansari, S. A.; Baek, J.-B.; Lee, J.-J., Edge-carboxylated graphene nanoplatelets as efficient electrode materials for electrochemical supercapacitors, Carbon, 142, 89-98 (2019)
[66] Numanoğlu, H. M.; Akgöz, B.; Civalek, Ö., On dynamic analysis of nanorods, International Journal of Engineering Science, 130, 33-50 (2018)
[67] Ogi, H.; Iwagami, S.; Nagakubo, A.; Taniguchi, T.; Ono, T., Nano-plate biosensor array using ultrafast heat transport through proteins, Sensors and Actuators B: Chemical, 278, 15-20 (2019)
[68] Papargyri-Beskou, S.; Beskos, D. E., Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates, Archive of Applied Mechanics, 78, 625-635 (2008) · Zbl 1239.74047
[69] Papargyri-Beskou, S.; Giannakopoulos, A. E.; Beskos, D. E., Variational analysis of gradient elastic flexural plates under static loading, International Journal of Solids and Structures, 47, 2755-2766 (2010) · Zbl 1196.74093
[70] Qi, L.; Huang, S.; Fu, G.; Zhou, S.; Jiang, X., On the mechanics of curved flexoelectric microbeams, International Journal of Engineering Science, 124, 1-15 (2018) · Zbl 1423.74317
[71] Rahaeifard, M.; Mojahedi, M., On the mechanics of laminated microplates, International Journal of Engineering Science, 119, 180-188 (2017) · Zbl 1423.74551
[72] Rajabi, K.; Hosseini-Hashemi, S., Application of the generalized Hooke’s law for viscoelastic materials (GHVMs) in nanoscale mass sensing applications of viscoelastic nanoplates: A theoretical study, European Journal of Mechanics-A/Solids, 67, 71-83 (2018) · Zbl 1406.74320
[73] Ramsden, J. J., Nanotechnology, an introduction (2016), Elsevier: Elsevier New York
[74] Reddy, J. N., Theory and analysis of elastic plates and shells (2007), Taylor & Francis CRC Press: Taylor & Francis CRC Press New York
[75] Romano, G.; Barretta, R., Comment on the paper “Exact solution of Eringen”s nonlocal integral model for bending of Bernoulli-Euler and Timoshenko beams” by meral Tuna & Mesut Kirca, International Journal of Engineering Science, 109, 240-242 (2016) · Zbl 1423.74511
[76] Romano, G.; Barretta, R., Nonlocal elasticity in nanobeams: The stress-driven integral model, International Journal of Engineering Science, 115, 14-27 (2017) · Zbl 1423.74512
[77] Romano, G.; Barretta, R., Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams, Composites Part B, 114, 184-188 (2017)
[78] Romano, G.; Barretta, R.; Diaco, M.; Marotti de Sciarra, F., Constitutive boundary conditions and paradoxes in nonlocal elastic nano-beams, International Journal of Mechanical Sciences, 121, 151-156 (2017)
[79] Romano, G.; Barretta, R.; Diaco, M., On nonlocal integral models for elastic nanobeams, International Journal of Mechanical Sciences, 131, 490-499 (2017)
[80] Romano, G.; Luciano, R.; Barretta, R.; Diaco, M., Nonlocal integral elasticity in nanostructures, mixtures, boundary effects and limit behaviours, Continuum Mechanics and Thermodynamics, 30, 3, 641-655 (2018) · Zbl 1392.74071
[81] Shahverdi, H.; Barati, M. R., Vibration analysis of porous functionally graded nanoplates, International Journal of Engineering Science, 120, 82-99 (2017) · Zbl 1423.74408
[82] She, G.-L.; Yuan, F.-G.; Ren, Y.-R.; Xiao, W.-S., On buckling and postbuckling behavior of nanotubes, International Journal of Engineering Science, 121, 130-142 (2017) · Zbl 1423.74353
[83] She, G.-L.; Ren, Y.-R.; Yuan, F.-G.; Xiao, W.-S., On vibrations of porous nanotubes, International Journal of Engineering Science, 125, 23-35 (2018) · Zbl 1423.74409
[84] She, G.-L.; Yuan, F.-G.; Ren, Y.-R., On wave propagation of porous nanotubes, International Journal of Engineering Science, 130, 62-74 (2018) · Zbl 1423.74425
[85] She, G.-L.; Yuan, F.-G.; Karami, B.; Ren, Y.-R.; Xiao, W.-S., On nonlinear bending behavior of FG porous curved nanotubes, International Journal of Engineering Science, 135, 58-74 (2019) · Zbl 1423.74352
[86] Shendage, S. S.; Patil, V. L.; Vanalakar, S. A.; Patil, S. P.; Harale, N. S.; Bhosale, J. L., Sensitive and selective \(NO_2\) gas sensor based on \(WO_3\) nanoplates, Sensors and Actuators B: Chemical, 240, 426-433 (2017)
[87] Srividhya, S.; Raghu, P.; Rajagopal, A.; Reddy, J. N., Nonlocal nonlinear analysis of functionally graded plates using third-order shear deformation theory, International Journal of Engineering Science, 125, 1-22 (2018) · Zbl 1423.74554
[88] Taati, E., On buckling and post-buckling behavior of functionally graded micro-beams in thermal environment, International Journal of Engineering Science, 128, 63-78 (2018) · Zbl 1423.74355
[89] Timoshenko, S.; Woinowsky-Krieger, S., Theory of plates and shells (1959), McGraw-Hill: McGraw-Hill New York · Zbl 0114.40801
[90] Yesuraj, J.; Suthanthiraraj, S. A.; Padmaraj, O., Synthesis, characterization and electrochemical performance of DNA-templated \(Bi_2 MoO_6\) nanoplates for supercapacitor applications, Materials Science in Semiconductor Processing, 90, 225-235 (2019)
[91] Yokokura, T.; Nakashima, Y.; Yonemoto, Y.; Hikichi, Y.; Nakanishi, Y., Method for measuring Young’s modulus of cells using a cell compression microdevice, International Journal of Engineering Science, 114, 41-48 (2017)
[92] Zhang, F.; Wu, S.; Peng, S.; Sha, Z.; Wang, C. H., Synergism of binary carbon nanofibres and graphene nanoplates in improving sensitivity and stability of stretchable strain sensors, Composites Science and Technology, 172, 7-16 (2019)
[93] Zhang, J. X.J.; Hoshino, K., Molecular sensors and nanodevices (2014), Elsevier: Elsevier New York
[94] Zhang, X.; Jiang, Y.; Liu, B.; Yang, W.; Li, J.; Niu, P., High-performance phototransistor based on individual high electron mobility MnWO4 nanoplate, Journal of Alloys and Compounds, 762, 933-940 (2018)
[95] Zhao, J.; Pedroso, D., Strain gradient theory in orthogonal curvilinear coordinates, International Journal of Solids and Structures, 45, 11-12, 3507-3520 (2008) · Zbl 1169.74334
[96] Zhao, J.; Guo, X.; Lu, L., Small size effect on the wrinkling hierarchy in constrained monolayer graphene, International Journal of Engineering Science, 131, 19-25 (2018)
[97] Zhu, X.; Wang, Y.; Dai, H.-H., Buckling analysis of Euler-Bernoulli beams using Eringen’s two-phase nonlocal model, International Journal of Engineering Science, 116, 130-140 (2017) · Zbl 1423.74360
[98] Zhu, X.; Li, L., Closed form solution for a nonlocal strain gradient rod in tension, International Journal of Engineering Science, 119, 16-28 (2017) · Zbl 1423.74334
[99] Zhu, X.; Li, L., On longitudinal dynamics of nanorods, International Journal of Engineering Science, 120, 129-145 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.