×

The Hörmander multiplier theorem for \(n\)-linear operators. (English) Zbl 1475.42020

Summary: In this paper, we study the Hörmander multiplier theorem for multilinear operators. We generalize the result of N. Tomita [J. Funct. Anal. 259, No. 8, 2028–2044 (2010; Zbl 1201.42005)] to wider target spaces and extend that of L. Grafakos and H. Van Nguyen [Monatsh. Math. 190, No. 4, 735–753 (2019; Zbl 1426.42012)] to multilinear operators. We indeed give two different proofs: The first proof is based on the results of L. Grafakos et al. [Can. J. Math. 65, No. 2, 299–330 (2013; Zbl 1275.42016); J. Math. Soc. Japan 69, No. 2, 529–562 (2017; Zbl 1372.42007)], L. Grafakos and H. van Nguyen [Colloq. Math. 144, No. 1, 1–30 (2016; Zbl 1339.42012); Monatsh. Math. 190, No. 4, 735–753 (2019; Zbl 1426.42012)], and A. Miyachi and N. Tomita [Rev. Mat. Iberoam. 29, No. 2, 495–530 (2013; Zbl 1275.42017)] and for the second one we provide a new and original approach, inspired by C. Muscalu et al. [Acta Math. 193, No. 2, 269–296 (2004; Zbl 1087.42016)]. We also give an application and discuss the sharpness of the result.

MSC:

42B15 Multipliers for harmonic analysis in several variables
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory
Full Text: DOI

References:

[1] Bényi, Á.; Torres, RH, Almost orthogonality and a class of bounded bilinear pseudodifferential operators, Math. Res. Lett., 11, 1, 1-11 (2004) · Zbl 1067.47062 · doi:10.4310/MRL.2004.v11.n1.a1
[2] Calderón, A-P, Intermediate spaces and interpolation, the complex method, Stud. Math., 24, 113-190 (1964) · Zbl 0204.13703 · doi:10.4064/sm-24-2-113-190
[3] Calderón, A-P; Torchinsky, A., Parabolic maximal functions associated with a distribution. II, Adv. Math., 24, 2, 101-171 (1977) · Zbl 0355.46021 · doi:10.1016/S0001-8708(77)80016-9
[4] Coifman, R.; Meyer, Y., Commutateurs d’intégrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier (Grenoble), 28, 3, 177-202 (1978) · Zbl 0368.47031 · doi:10.5802/aif.708
[5] Coifman, R.R., Meyer, Y.: Au delà des opérateurs pseudo-différentiels, Astérisque, vol. 57. Société Mathématique de France, Paris (1978). With an English summary · Zbl 0483.35082
[6] Fefferman, C.; Stein, EM, Some maximal inequalities, Am. J. Math., 93, 107-115 (1971) · Zbl 0222.26019 · doi:10.2307/2373450
[7] Grafakos, L.; He, D.; Honzík, P., The Hörmander multiplier theorem, II: the bilinear local \(L^2\) case, Math. Z., 289, 3-4, 875-887 (2018) · Zbl 1405.42014 · doi:10.1007/s00209-017-1979-8
[8] Grafakos, L., He, D., Honzík, P., Park, B.J.: Initial \({L}^2\times \cdots \times{L}^2\) bounds for multilinear operators. Preprint. arXiv:2010.15312
[9] Grafakos, L.; He, D.; Honzik, P.; Van Nguyen, H., The Hörmander multiplier theorem, I: the linear case revisited, Ill. J. Math., 61, 1-2, 25-35 (2017) · Zbl 1395.42025
[10] Grafakos, L.; He, D.; Van Nguyen, H.; Yan, L., Multilinear multiplier theorems and applications, J. Fourier Anal. Appl., 25, 3, 959-994 (2019) · Zbl 1423.42018 · doi:10.1007/s00041-018-9606-6
[11] Grafakos, L.; Kalton, N., Some remarks on multilinear maps and interpolation, Math. Ann., 319, 1, 151-180 (2001) · Zbl 0982.46018 · doi:10.1007/PL00004426
[12] Grafakos, L.; Miyachi, A.; Tomita, N., On multilinear Fourier multipliers of limited smoothness, Can. J. Math., 65, 2, 299-330 (2013) · Zbl 1275.42016 · doi:10.4153/CJM-2012-025-9
[13] Grafakos, L.; Miyachi, A.; van Nguyen, H.; Tomita, N., Multilinear Fourier multipliers with minimal Sobolev regularity, II, J. Math. Soc. Jpn., 69, 2, 529-562 (2017) · Zbl 1372.42007 · doi:10.2969/jmsj/06920529
[14] Grafakos, L.; Van Nguyen, H., Multilinear Fourier multipliers with minimal Sobolev regularity, I, Colloq. Math., 144, 1, 1-30 (2016) · Zbl 1339.42012 · doi:10.4064/cm6771-10-2015
[15] Grafakos, L., Park, B.J.: Characterization of multilinear multipliers in terms of Sobolev space regularity. Trans. Amer. Math. Soc. (2021, to appear). arXiv:2003.11739 · Zbl 1470.42017
[16] Grafakos, L., Park, B.J.: The mutilinear Hörmander mutiplier theorem with a Lorentz-Sobolev condition. Preprint. arXiv:2005.01213
[17] Grafakos, L., Park, B.J.: Sharp hardy space estimates for multipliers. Int. Math. Res. Not. (2021, to appear). arXiv:1912.01749.pdf
[18] Grafakos, L.; Si, Z., The Hörmander multiplier theorem for multilinear operators, J. Reine Angew. Math., 668, 133-147 (2012) · Zbl 1254.42017
[19] Grafakos, L.; Torres, RH, Multilinear Calderón-Zygmund theory, Adv. Math., 165, 1, 124-164 (2002) · Zbl 1032.42020 · doi:10.1006/aima.2001.2028
[20] Grafakos, L.; Van Nguyen, H., The Hörmander multiplier theorem, III: the complete bilinear case via interpolation, Monatsh. Math., 190, 4, 735-753 (2019) · Zbl 1426.42012 · doi:10.1007/s00605-019-01300-x
[21] Heo, Y.; Hong, S.; Yang, CW, Off-diagonal estimates for the first order commutators in higher dimensions, J. Funct. Anal., 279, 7, 108652. (2020) · Zbl 1473.42017 · doi:10.1016/j.jfa.2020.108652
[22] Hörmander, L., Estimates for translation invariant operators in \(L^p\) spaces, Acta Math., 104, 93-140 (1960) · Zbl 0093.11402 · doi:10.1007/BF02547187
[23] Kenig, CE; Stein, EM, Multilinear estimates and fractional integration, Math. Res. Lett., 6, 1, 1-15 (1999) · Zbl 0952.42005 · doi:10.4310/MRL.1999.v6.n1.a1
[24] Mihlin, SG, On the multipliers of Fourier integrals, Dokl. Akad. Nauk SSSR (N.S.), 109, 701-703 (1956) · Zbl 0073.08402
[25] Miyachi, A.; Tomita, N., Minimal smoothness conditions for bilinear Fourier multipliers, Rev. Mat. Iberoam., 29, 2, 495-530 (2013) · Zbl 1275.42017 · doi:10.4171/RMI/728
[26] Muscalu, C.; Pipher, J.; Tao, T.; Thiele, C., Bi-parameter paraproducts, Acta Math., 193, 2, 269-296 (2004) · Zbl 1087.42016 · doi:10.1007/BF02392566
[27] Muscalu, C., Schlag, W.: Classical and Multilinear Harmonic Analysis, vol. II. Cambridge Studies in Advanced Mathematics, vol. 138. Cambridge University Press, Cambridge (2013) · Zbl 1281.42002
[28] Park, B.J.: BMO multilinear multiplier theorem of Mikhlin-Hörmander type. Monatsh. Math. 194, 291-304 (2021) · Zbl 1466.42008
[29] Park, B.J.: Equivalence of (quasi-)norms on a vector-valued function space and its applications to multilinear operators. Indiana Univ. Math. J. (2021, to appear) · Zbl 1523.46033
[30] Park, B.J.: On the failure of multilinear multiplier theorem with endpoint smoothness conditions. Potential Anal. (2021, to appear). arXiv:1912.03873
[31] Slavíková, L., On the failure of the Hörmander multiplier theorem in a limiting case, Rev. Mat. Iberoam., 36, 4, 1013-1020 (2020) · Zbl 1459.42016 · doi:10.4171/rmi/1157
[32] Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton (1993). With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III · Zbl 0821.42001
[33] Tomita, N., A Hörmander type multiplier theorem for multilinear operators, J. Funct. Anal., 259, 8, 2028-2044 (2010) · Zbl 1201.42005 · doi:10.1016/j.jfa.2010.06.010
[34] Triebel, H.: Theory of Function Spaces. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel (2010). Reprint of 1983 edition [MR0730762], also published in 1983 by Birkhäuser Verlag [MR0781540]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.