×

Characterization of multilinear multipliers in terms of Sobolev space regularity. (English) Zbl 1470.42017

Summary: We provide necessary and sufficient conditions for multilinear multiplier operators with symbols in \(L^r\)-based product-type Sobolev spaces uniformly over all annuli to be bounded from products of Hardy spaces to a Lebesgue space. We consider the case \(1<r\le 2\) and we characterize boundedness in terms of inequalities relating the Lebesgue indices (or Hardy indices), the dimension, and the regularity and integrability indices of the Sobolev space. The case \(r>2\) cannot be handled by known techniques and remains open. Our result not only extends but also establishes the sharpness of previous results of L. Grafakos et al. [Can. J. Math. 65, No. 2, 299–330 (2013; Zbl 1275.42016); J. Math. Soc. Japan 69, No. 2, 529–562 (2017; Zbl 1372.42007)], L. Grafakos and H. van Nguyen [Colloq. Math. 144, No. 1, 1–30 (2016; Zbl 1339.42012)], and A. Miyachi and N. Tomita [Rev. Mat. Iberoam. 29, No. 2, 495–530 (2013; Zbl 1275.42017)], who only considered the case \(r=2\).

MSC:

42B15 Multipliers for harmonic analysis in several variables
42B25 Maximal functions, Littlewood-Paley theory
42B30 \(H^p\)-spaces
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

References:

[1] Calder\'{o}n, Alberto P., Intermediate spaces and interpolation, the complex method, Studia Math., 24, 113-190 (1964) · Zbl 0204.13703 · doi:10.4064/sm-24-2-113-190
[2] Calder\'{o}n, Alberto P.; Torchinsky, Alberto, Parabolic maximal functions associated with a distribution. II, Adv. Math., 24, 2, 101-171 (1977) · Zbl 0355.46021 · doi:10.1016/S0001-8708(77)80016-9
[3] Coifman, Ronald R.; Meyer, Yves, Au del\`a des op\'{e}rateurs pseudo-diff\'{e}rentiels, Ast\'{e}risque 57, i+185 pp. (1978), Soci\'{e}t\'{e} Math\'{e}matique de France, Paris · Zbl 0483.35082
[4] Fefferman, Charles; Stein, Elias M., Some maximal inequalities, Amer. J. Math., 93, 107-115 (1971) · Zbl 0222.26019 · doi:10.2307/2373450
[5] Fefferman, Charles; Stein, Elias M., \(H^p\) spaces of several variables, Acta Math., 129, 3-4, 137-193 (1972) · Zbl 0257.46078 · doi:10.1007/BF02392215
[6] Frazier, Michael; Jawerth, Bj\"{o}rn, A discrete transform and decompositions of distribution spaces, J. Funct. Anal., 93, 1, 34-170 (1990) · Zbl 0716.46031 · doi:10.1016/0022-1236(90)90137-A
[7] Fujita, Mai; Tomita, Naohito, Weighted norm inequalities for multilinear Fourier multipliers, Trans. Amer. Math. Soc., 364, 12, 6335-6353 (2012) · Zbl 1275.42015 · doi:10.1090/S0002-9947-2012-05700-X
[8] Grafakos, Loukas, Classical Fourier analysis, Graduate Texts in Mathematics 249, xviii+638 pp. (2014), Springer, New York · Zbl 1304.42001 · doi:10.1007/978-1-4939-1194-3
[9] Gr2 Loukas Grafakos, An improvement of the Marcinkiewicz multiplier theorem, Israel J. Math., to appear.
[10] Grafakos, Loukas; He, Danqing; Honzik, Petr; Nguyen, Hanh V., The H\"{o}rmander multiplier theorem, I: The linear case revisited, Illinois J. Math., 61, 1-2, 25-35 (2017) · Zbl 1395.42025
[11] Grafakos, Loukas; He, Danqing; Nguyen, Hanh V.; Yan, Lixin, Multilinear multiplier theorems and applications, J. Fourier Anal. Appl., 25, 3, 959-994 (2019) · Zbl 1423.42018 · doi:10.1007/s00041-018-9606-6
[12] Grafakos, Loukas; Kalton, Nigel, Multilinear Calder\'{o}n-Zygmund operators on Hardy spaces, Collect. Math., 52, 2, 169-179 (2001) · Zbl 0986.42008
[13] Grafakos, Loukas; Miyachi, Akihiko; Tomita, Naohito, On multilinear Fourier multipliers of limited smoothness, Canad. J. Math., 65, 2, 299-330 (2013) · Zbl 1275.42016 · doi:10.4153/CJM-2012-025-9
[14] Grafakos, Loukas; Miyachi, Akihiko; Nguyen, Hanh V.; Tomita, Naohito, Multilinear Fourier multipliers with minimal Sobolev regularity, II, J. Math. Soc. Japan, 69, 2, 529-562 (2017) · Zbl 1372.42007 · doi:10.2969/jmsj/06920529
[15] Grafakos, Loukas; Nguyen, Hanh V., Multilinear Fourier multipliers with minimal Sobolev regularity, I, Colloq. Math., 144, 1, 1-30 (2016) · Zbl 1339.42012 · doi:10.4064/cm6771-10-2015
[16] Gr_Park Loukas Grafakos and Bae Jun Park, Sharp Hardy space estimates for multipliers, Int. Math. Res. Not., to appear. · Zbl 1493.42013
[17] Grafakos, Loukas; Si, Zengyan, The H\"{o}rmander multiplier theorem for multilinear operators, J. Reine Angew. Math., 668, 133-147 (2012) · Zbl 1254.42017 · doi:10.1515/crelle.2011.137
[18] Grafakos, Loukas; Torres, Rodolfo H., Multilinear Calder\'{o}n-Zygmund theory, Adv. Math., 165, 1, 124-164 (2002) · Zbl 1032.42020 · doi:10.1006/aima.2001.2028
[19] H\"{o}rmander, Lars, Estimates for translation invariant operators in \(L^p\) spaces, Acta Math., 104, 93-140 (1960) · Zbl 0093.11402 · doi:10.1007/BF02547187
[20] Janson, Svante; Jones, Peter W., Interpolation between \(H^p\) spaces: the complex method, J. Funct. Anal., 48, 1, 58-80 (1982) · Zbl 0507.46047 · doi:10.1016/0022-1236(82)90061-1
[21] Kenig, Carlos E.; Stein, Elias M., Multilinear estimates and fractional integration, Math. Res. Lett., 6, 1, 1-15 (1999) · Zbl 0952.42005 · doi:10.4310/MRL.1999.v6.n1.a1
[22] Mihlin, S. G., On the multipliers of Fourier integrals, Dokl. Akad. Nauk SSSR (N.S.), 109, 701-703 (1956) · Zbl 0073.08402
[23] Miyachi, Akihiko; Tomita, Naohito, Minimal smoothness conditions for bilinear Fourier multipliers, Rev. Mat. Iberoam., 29, 2, 495-530 (2013) · Zbl 1275.42017 · doi:10.4171/RMI/728
[24] Park3 Bae Jun Park, Equivalence of (quasi-)norms on a vector-valued function space and its applications to multilinear operators, Indiana Univ. Math. J., to appear. · Zbl 1523.46033
[25] Park4 Bae Jun Park, On the failure of multilinear multiplier theorem with endpoint smoothness conditions, Potential Anal., to appear. · Zbl 1482.42016
[26] Str\"{o}mberg, Jan-Olov; Torchinsky, Alberto, Weighted Hardy spaces, Lecture Notes in Mathematics 1381, vi+193 pp. (1989), Springer-Verlag, Berlin · Zbl 0676.42021 · doi:10.1007/BFb0091154
[27] Tomita, Naohito, A H\"{o}rmander type multiplier theorem for multilinear operators, J. Funct. Anal., 259, 8, 2028-2044 (2010) · Zbl 1201.42005 · doi:10.1016/j.jfa.2010.06.010
[28] Tr Hans Triebel, Theory of function spaces, Birkhauser, Basel-Boston-Stuttgart (1983). · Zbl 0546.46027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.