×

On the identification of the heat conductivity distribution from partial dynamic boundary measurements. (English) Zbl 1475.35414

Summary: This work deals with an inverse boundary value problem arising from the equation of heat conduction. We reconstruct small perturbations of the (isotropic) heat conductivity distribution from partial (on accessible part of the boundary) dynamic boundary measurements and for finite interval in time. By constructing of appropriate test functions, using a control method, we provide a rigorous derivation of the inverse Fourier transform of the perturbations in the diffusion coefficient as the leading order of an appropriate averaging of the partial dynamic boundary measurements.

MSC:

35R30 Inverse problems for PDEs
35K05 Heat equation
35K20 Initial-boundary value problems for second-order parabolic equations
80A23 Inverse problems in thermodynamics and heat transfer
93B05 Controllability

References:

[1] Somersalo, E.; Isaacson, D.; Cheney, M., A linearized inverse boundary value problem for Maxwell’s equations, J Comput Appl Math, 42, 123-136 (1992) · Zbl 0757.65128 · doi:10.1016/0377-0427(92)90167-V
[2] Ammari, H., Identification of small amplitude perturbations in the electromagnetic parameters from partial dynamic boundary measurements, J Math Anal Appl, 282, 479-494 (2003) · Zbl 1082.78006 · doi:10.1016/S0022-247X(02)00709-6
[3] Darbas, M.; Lohrengel, S., Numerical reconstruction of small perturbations in the electromagnetic coefficients of a dielectric material, J Comput Math, 32, 1, 21-38 (2014) · Zbl 1313.35337 · doi:10.4208/jcm.1309-m4378
[4] Lions, JL.Contrôlabilit exacte, Perturbations et Stabilisation de Systemes Distribues, Tome 1, Contrôlabilite Exacte, Masson, Paris; 1988. · Zbl 0653.93002
[5] Carthel, C.; Glowinski, R.; Lions, JL., On exact and approximate boundary controllabilities for the heat equation: a numerical approach, J Opt Theory Appl, 82, 3, 430-484 (1994) · Zbl 0825.93316 · doi:10.1007/BF02192213
[6] Nachman, A., A global uniqueness for a two dimensional inverse boundary problem, Ann Math, 142, 71-96 (1995) · Zbl 0857.35135
[7] Astala, K.; Päivärinta, L., Calderon’s inverse conductivity problem in the plane, Ann Math, 163, 265-299 (2006) · Zbl 1111.35004 · doi:10.4007/annals.2006.163.265
[8] Jin, B.; Zou, J., Numerical estimation of the Robin coefficient in a stationary diffusion equation, IMA J Numer Anal, 30, 677-701 (2010) · Zbl 1203.65232 · doi:10.1093/imanum/drn066
[9] Calderon, AP.On an inverse boundary value problem, ‘Seminar on Numerical Analysis and its Applications to Continuum Physics’, Rio de Janeiro; 1980. p. 65-73.
[10] Sylvester, J.; Uhlmann, G., A global uniqueness theorem for an inverse boundary value problem, Ann Math, 125, 153-169 (1987) · Zbl 0625.35078 · doi:10.2307/1971291
[11] Yamamoto, M., Stability, reconstruction formula and regularization for an inverse source hyperbolic problem by a control method, Inverse Probl, 11, 481-496 (1995) · Zbl 0822.35154 · doi:10.1088/0266-5611/11/2/013
[12] Benabdallah, A.; Gaitan, P.; Le Rousseau, J., Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation, SIAM J Control Optim, 46, 5, 1849-1881 (2007) · Zbl 1155.35485 · doi:10.1137/050640047
[13] Bryan, K.; Caudill Jr, LF., An inverse problem in thermal imaging, SIAM J Appl Math, 56, 715-735 (1996) · Zbl 0854.35125 · doi:10.1137/S0036139994277828
[14] Evans, LC.Partial differential equations. Graduate Studies in Mathematics. Providence, Rhode Island: AMS; 1998. · Zbl 0902.35002
[15] Strauss, Walter A., Partial differential equations (2008), United States: John Wiley and Sons, Ltd., United States · Zbl 1160.35002
[16] Hsiao, GC; Saranen, J., Boundary integral solution of the twodimmensional heat equation, Math Methods Appl Sci, 16, 87-114 (1993) · Zbl 0772.45001 · doi:10.1002/mma.1670160203
[17] Lions, JL; Magenes, E., Problemes aux limites non homogenes (1968), French: Dunod Paris, French · Zbl 0165.10801
[18] Ammari, H., An inverse initial boundary value problem for the wave equation in the presence of imperfections of small volume, SIAM J Control Optim, 41, 1194-1211 (2003) · Zbl 1028.35159 · doi:10.1137/S0363012901384247
[19] Ammari, H.; Iakovleva, E.; Kang, H., Direct algorithms for thermal imaging of small inclusions, SIAM Multi Model Simul, 4, 1116-1136 (2005) · Zbl 1236.35201 · doi:10.1137/040620266
[20] Engl, HW; Zou, J., A new approach to convergence rate analysis of Tikhonov regularization for parameter identification in heat conduction, Inverse Probl, 16, 1907-1923 (2000) · Zbl 0968.35124 · doi:10.1088/0266-5611/16/6/319
[21] Asmi, L, Bouraoui, M, Khelifi, A.Reconstruction of polygonal inclusions in a heat conductive body from dynamical boundary data. Vol. 51, p. 949; 2017. · Zbl 1372.35357
[22] Bellassoued, M.; Choulli, M.; Jbalia, A., Stability of the determination of the surface impedance of an obstacle from the scattering amplitude, Math Methods Appl Sci, 36, 18, 2429-2448 (2013) · Zbl 1278.35265 · doi:10.1002/mma.2762
[23] Bryan, K.; Caudill Jr, LF., Stability and reconstruction for an inverse problem for the heat equation, Inverse Probl, 14, 1429-1453 (1998) · Zbl 0914.35152 · doi:10.1088/0266-5611/14/6/005
[24] Jbalia, A., On a logarithmic stability estimate for an inverse heat conduction problem, Math Control Related Field, 9, 277-287 (2019) · Zbl 1428.65031 · doi:10.3934/mcrf.2019014
[25] Gaitan, P.; Isozaki, H.; Poisson, O., Inverse problems for time-dependent singular heat conductivities: multi-dimensional case, Commun Partial Differ Equ, 40, 5, 837-877 (2015) · Zbl 1327.35438 · doi:10.1080/03605302.2014.992533
[26] Ikehata, M., Extracting discontinuity in a heat conductiong body. One-space dimensional case, Appl Anal, 86, 963-1005 (2007) · Zbl 1132.35498 · doi:10.1080/00036810701460834
[27] Ikehata, M.; Kawashita, M., On the reconstruction of inclusions in a heat conductive body from dynamical boundary data over a finite time interval, Inverse Probl, 26, 9, 15-00 (2010) · Zbl 1200.35329 · doi:10.1088/0266-5611/26/9/095004
[28] Jia, XZ; Wang, YB., A boundary integral method for solving inverse heat conduction problem, J Inverse Ill-Posed Probl, 14, 4, 375-384 (2006) · Zbl 1110.35103 · doi:10.1515/156939406777570987
[29] Ammari, H, Garnier, J, Jing, W, et al. Mathematical and statistical methods for multistatic imaging. Lecture Notes in Mathematics. Vol. 2098. Cham: Springer-Verlag; 2013. · Zbl 1288.35001
[30] Ammari, H, Kang, H.Polarization and moment tensors: with applications to inverse problems and effective medium theory. Applied Mathematical Sciences Series. Vol. 162. New York: Springer-Verlag; 2007. · Zbl 1220.35001
[31] Ammari, H, Kang, H.Reconstruction of small inhomogeneities from boundary measurements. Lecture Notes in Mathematics. Vol. 1846. Berlin: Springer-Verlag; 2004. · Zbl 1113.35148
[32] Friedman, A.; Vogelius, M., Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence, Arch Rat Mech Anal, 105, 299-326 (1989) · Zbl 0684.35087 · doi:10.1007/BF00281494
[33] Vogelius, M.; Volkov, D., Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities, Math Model Numer Anal, 3, 4, 723-748 (2000) · Zbl 0971.78004 · doi:10.1051/m2an:2000101
[34] Isakov, V., Inverse source problems (1990), Providence (RI): American Mathematical Society, Providence (RI) · Zbl 0721.31002
[35] Puel, JP; Yamamoto, M., Applications de la contrôlabilité exacte à quelques probl‘emes inverses hyperboliques, C R Acad Sci Paris Série I, 320, 1171-1176 (1995) · Zbl 0829.93019
[36] Bruckner, G.; Yamamoto, M., Determination of point wave sources by pointwise observations: stability and reconstruction, Inverse Probl, 16, 723-748 (2000) · Zbl 0962.35184 · doi:10.1088/0266-5611/16/3/312
[37] Bowman, F., Introduction to bessel functions (1958), New York: Dover, New York · JFM 64.1087.01
[38] Glowinski, R, Lions, JL, He, JW.Exact and approximate controllability for distributed parameter systems: a numerical approach. Cambridge University Press. Cambridge; 2008. · Zbl 1142.93002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.