×

Stability and the Morse boundary. (English) Zbl 1475.20069

Summary: Stable subgroups and the Morse boundary are two systematic approaches to collect and study the hyperbolic aspects of finitely generated groups. In this paper we unify and generalise these strategies by viewing any geodesic metric space as a countable union of stable subspaces: we show that every stable subgroup is a quasi-convex subset of a set in this collection and that the Morse boundary is recovered as the direct limit of the usual Gromov boundaries of these hyperbolic subspaces.
We use this approach, together with results of Leininger-Schleimer, to deduce that there is no purely geometric obstruction to the existence of a non-virtually-free convex cocompact subgroup of a mapping class group.
In addition, we define two new quasi-isometry invariant notions of dimension: the stable dimension, which measures the maximal asymptotic dimension of a stable subset; and the Morse capacity dimension, which naturally generalises Buyalo’s capacity dimension for boundaries of hyperbolic spaces.
We prove that every stable subset of a right-angled Artin group is quasi-isometric to a tree; and that the stable dimension of a mapping class group is bounded from above by a multiple of the complexity of the surface. In the case of relatively hyperbolic groups we show that finite stable dimension is inherited from peripheral subgroups.
Finally, we show that all classical small cancellation groups and certain graphical small cancellation groups – including some Gromov monster groups – have stable dimension at most 2.

MSC:

20F67 Hyperbolic groups and nonpositively curved groups
20F65 Geometric group theory
20F36 Braid groups; Artin groups

References:

[1] T.Aougab, M. G.Durham and S. J.Taylor, ‘Contents of a preprint announced’, Preprint, 2016, arXiv:1609.06698.
[2] G. N.Arzhantseva, C. H.Cashen, D.Gruber and D.Hume, ‘Characterization of Morse quasi-geodesics via superlinear divergence and sublinear contraction’, Preprint, 2016, arXiv: 1601.01879.
[3] G. N.Arzhantseva, C. H.Cashen, D.Gruber and D.Hume, ‘Contracting geodesics in infinitely presented graphical small cancellation groups’, Preprint, 2016, arXiv: 1602.03767.
[4] G.Arzhantseva and T.Delzant, ‘Examples of Random groups’, available at http://www.mat.univie.ac.at/arjantseva/Abs/random.pdf.
[5] J.Behrstock and R.Charney, ‘Divergence and quasimorphisms of right-angled Artin groups’, Math. Ann.352 (2012) 339-356. · Zbl 1251.20036
[6] J.Behrstock, M.Hagen and A.Sisto, ‘Asymptotic dimension and small‐cancellation for hierarchically hyperbolic spaces and groups’, Preprint, 2015, arXiv: 1512.06071.
[7] G.Bell and K.Fujiwara, ‘The asymptotic dimension of a curve graph is finite’, J. Lond. Math. Soc. (2) 77 (2008) 33-50. · Zbl 1135.57010
[8] M.Bestvina, ‘Questions in geometric group theory’, available at http://www.math.utah.edu/bestvina/eprints/questions‐updated.pdf.
[9] M.Bestvina and K.Bromberg, ‘On the asymptotic dimension of the curve complex’, Preprint, 2015, arXiv: 1508.04832.
[10] M.Bestvina, K.Bromberg and K.Fujiwara, ‘Constructing group actions on quasi‐trees and applications to mapping class groups’, Publ. Math. Inst. Hautes Études Sci.122 (2015) 1-64. · Zbl 1372.20029
[11] M.Bestvina and G.Mess, ‘The boundary of negatively curved groups’, J. Amer. Math. Soc.4 (1991) 469-481. · Zbl 0767.20014
[12] M.Bonk and O.Schramm, ‘Embeddings of Gromov hyperbolic spaces’, Geom. Funct. Anal.10 (2000) 266-306. · Zbl 0972.53021
[13] M. R.Bridson and A.Haeiger, Metric spaces of non‐positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 319 (Springer, Berlin, 1999). · Zbl 0988.53001
[14] S. V.Buyalo, ‘Asymptotic dimension of a hyperbolic space and the capacity dimension of its boundary at infinity’, Algebra i Analiz17 (2005) 70-95. · Zbl 1100.31006
[15] S. V.Buyalo and N. D.Lebedeva, ‘Dimensions of locally and asymptotically self‐similar spaces’, Algebra i Analiz19 (2007) 60-92. · Zbl 1145.54029
[16] S.Buyalo and V.Schroeder, Elements of asymptotic geometry, EMS Monographs in Mathematics (European Mathematical Society (EMS), Zürich, 2007). · Zbl 1169.53031
[17] C. H.Cashen, ‘Quasi‐isometries need not induce homeomorphisms of contracting boundaries with the Gromov product topology’, Anal. Geom. Metr. Spaces4 (2016) 278-281. · Zbl 1377.20030
[18] R.Charney and H.Sultan, ‘Contracting boundaries of CAT(0) spaces’, J. Topol.8 (2015) 93-117. · Zbl 1367.20043
[19] M.Cordes, ‘Morse boundaries of proper geodesic metric spaces’, Groups Geom. Dyn., to appear. · Zbl 1423.20043
[20] M.Cordes and D.Hume, ‘Relatively hyperbolic groups with fixed peripherals’, Preprint, 2016, arXiv: 1609.05154. · Zbl 1446.20068
[21] C. B.Croke and B.Kleiner, ‘Spaces with nonpositive curvature and their ideal boundaries’, Topology39 (2000) 549-556. · Zbl 0959.53014
[22] S.Dowdall, A.Kent and C. J.Leininger, ‘Pseudo‐Anosov subgroups of fibered 3‐manifold groups’, Groups Geom. Dyn.8 (2014) 1247-1282. · Zbl 1321.57001
[23] C.Druţu and M.Kapovich, ‘Lectures on geometric group theory’, Preprint.
[24] C.Druţu, S.Mozes and M.Sapir, ‘Divergence in lattices in semisimple Lie groups and graphs of groups, Trans. Amer. Math. Soc.362 (2010) 2451-2505. · Zbl 1260.20065
[25] C.Druţu and M.Sapir, ‘Tree‐graded spaces and asymptotic cones of groups’, Topology44 (2005) 959-1058, With an appendix by Denis Osin and Mark Sapir. · Zbl 1101.20025
[26] M. G.Durham and S. J.Taylor, ‘Convex cocompactness and stability in mapping class groups’, Algebr. Geom. Topol.15 (2015) 2839-2859. · Zbl 1364.20027
[27] B.Farb and L.Mosher, ‘Convex cocompact subgroups of mapping class groups’, Geom. Topol.6 (2002) 91-152 (electronic). · Zbl 1021.20034
[28] É.Ghys and P.de laHarpe, ‘quasi-isométries et quasi‐géodésiques’, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988) (Birkhäuser Boston, Boston, MA, 1990) 79-102. · Zbl 0731.20025
[29] M.Gromov, ‘Hyperbolic groups’, Essays in group theory (Springer, New York, 1987) 75-263. · Zbl 0634.20015
[30] M.Gromov, ‘Random walk in random groups’, Geom. Funct. Anal.13 (2003) 73-146. · Zbl 1122.20021
[31] D.Gruber, ‘Groups with graphical C(6) and C(7) small cancellation presentations’, Trans. Amer. Math. Soc.367 (2015) 2051-2078. · Zbl 1368.20030
[32] M. F.Hagen, ‘Weak hyperbolicity of cube complexes and quasi‐arboreal groups’, J. Topol.7 (2014) 385-418. · Zbl 1348.20044
[33] N.Higson, V.Lafforgue and G.Skandalis, ‘Counterexamples to the Baum‐Connes conjecture’, Geom. Funct. Anal.12 (2002) 330-354. · Zbl 1014.46043
[34] D.Hume, ‘Embedding mapping class groups into a finite product of trees’, to appear Groups Geom. Dyn., Preprint, 2012, arXiv: 1207.2132.
[35] D.Hume, ‘A continuum of expanders’, Fund. Math., to appear. · Zbl 1400.05111
[36] A.Kent, C. J.Leininger and S.Schleimer, ‘Trees and mapping class groups’, J. reine angew. Math.637 (2009) 1-21. · Zbl 1190.57014
[37] T.Koberda, J.Mangahas and S. J.Taylor, ‘The geometry of purely loxodromic subgroups of right-angled Artin groups’, Preprint, 2014, arXiv: 1412.3663. · Zbl 1476.20042
[38] C.Leininger and S.Schleimer, ‘Hyperbolic spaces in Teichmüller spaces’, J. Eur. Math. Soc. (JEMS) 16 (2014) 2669-2692. · Zbl 1310.30038
[39] R. C.Lyndon and P. E.Schupp, Combinatorial group theory, Classics in Mathematics (Springer, Berlin, 2001), Reprint of the 1977 edition. · Zbl 0997.20037
[40] J. M.Mackay and A.Sisto, ‘Embedding relatively hyperbolic groups in products of trees’, Algebr. Geom. Topol.13 (2013) 2261-2282. · Zbl 1286.20054
[41] H. A.Masur and Y. N.Minsky, ‘Geometry of the complex of curves. I. Hyperbolicity’, Invent. Math.138 (1999) 103-149. · Zbl 0941.32012
[42] H. A.Masur and Y. N.Minsky, ‘Geometry of the complex of curves. II. Hierarchical structure’, Geom. Funct. Anal.10 (2000) 902-974. · Zbl 0972.32011
[43] H.Min, ‘Hyperbolic graphs of surface groups’, Algebr. Geom. Topol.11 (2011) 449-476. · Zbl 1270.20052
[44] H. M.Morse, ‘A fundamental class of geodesics on any closed surface of genus greater than one’, Trans. Amer. Math. Soc.26 (1924) 25-60. · JFM 50.0466.04
[45] D.Murray, ‘Topology and dynamics of the contracting boundary of cocompact CAT(0) spaces’, Preprint, 2015, arXiv: 1509.09314.
[46] Y.Ollivier, ‘On a small cancellation theorem of Gromov’, Bull. Belg. Math. Soc. Simon Stevin13 (2006) 75-89. · Zbl 1129.20022
[47] D.Osajda, ‘Small cancellation labellings of some infinite graphs and applications’, Preprint, 2014, arXiv: 1406.5015.
[48] D. V.Osin, ‘Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems’, Mem. Amer. Math. Soc.179 (2006) vi+100. · Zbl 1093.20025
[49] D. V.Osin, ‘Acylindrically hyperbolic groups’, Trans. Amer. Math. Soc.368 (2016) 851-888. · Zbl 1380.20048
[50] P.Pansu, ‘Dimension conforme et sphère à l’infini des variétés à courbure négative’, Ann. Acad. Sci. Fenn. Ser. A I Math.14 (1989) 177-212. · Zbl 0722.53028
[51] A.Sisto, ‘Quasi‐convexity of hyperbolically embedded subgroups’, Math. Z. (2016) 283 649-658. · Zbl 1380.20044
[52] R.Strebel, ‘Appendix: Small cancellation groups’, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988) (Birkhäuser Boston, Boston, MA, 1990) 227-273.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.