×

Embedding relatively hyperbolic groups in products of trees. (English) Zbl 1286.20054

The authors show that if every peripheral subgroup of a relatively hyperbolic group embeds into the product of finitely many trees, then the entire group does. Moreover they give explicit bounds for the number of trees required. The analogue results were proved for hyperbolic groups by S. Buyalo and N. Lebedeva [St. Petersbg. Math. J. 19, No. 1, 45-65 (2008); translation from Algebra Anal. 18, No. 1, 60-92 (2007; Zbl 1145.54029)] and S. Buyalo, A. Dranishnikov and V. Schroeder [Invent. Math. 169, No. 1, 153-192 (2007; Zbl 1157.57003)].
The main result of the paper under review is the following theorem: Suppose the group \(G\) is hyperbolic relative to subgroups \(H_1,H_2,\ldots,H_n\). If each \(H_i\) quasi-isometrically embeds into a product of \(m\) metric trees, then \(\text{asdim}(G)<\infty\) and \(G\) quasi-isometrically embeds into a product of \(M\) metric trees, where \(M=\max\{\text{asdim}(G),m+1\}+m+1<\infty\). Conversely, if \(G\) quasi-isometrically embeds into a product of \(N\) metric trees, then each peripheral group does also.
As an application the authors prove the following theorem: Let \(G=\pi_1(M)\), where \(M\) is a compact, orientable 3-manifold whose (possible empty) boundary is a union of tori. Then \(\text{eco-dim}(G)<\infty\) if and only if no manifold in the prime decomposition of \(M\) has NIL geometry; in this case, \(\text{eco-dim}(G)\leq 8\). – Here \(\text{eco-dim}(X)\), for a metric space \(X\), denotes the smallest \(n\in\mathbb{N}\) so that \(X\) quasi-isometrically embeds in the product of \(n\) metric trees, and set \(\text{eco-dim}(X)=\infty\) if no such embedding exists.

MSC:

20F67 Hyperbolic groups and nonpositively curved groups
20E08 Groups acting on trees
20F65 Geometric group theory
54F45 Dimension theory in general topology
20F69 Asymptotic properties of groups
57M07 Topological methods in group theory
54E35 Metric spaces, metrizability
53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces

References:

[1] I Agol, Criteria for virtual fibering, J. Topol. 1 (2008) 269 · Zbl 1148.57023 · doi:10.1112/jtopol/jtn003
[2] M Aschenbrenner, S Friedl, H Wilton, 3-manifold groups · Zbl 1326.57001
[3] G Bell, A Dranishnikov, On asymptotic dimension of groups, Algebr. Geom. Topol. 1 (2001) 57 · Zbl 1008.20039 · doi:10.2140/agt.2001.1.57
[4] G Bell, A Dranishnikov, On asymptotic dimension of groups acting on trees, Geom. Dedicata 103 (2004) 89 · Zbl 1131.20032 · doi:10.1023/B:GEOM.0000013843.53884.77
[5] G Bell, A Dranishnikov, A Hurewicz-type theorem for asymptotic dimension and applications to geometric group theory, Trans. Amer. Math. Soc. 358 (2006) 4749 · Zbl 1117.20032 · doi:10.1090/S0002-9947-06-04088-8
[6] M Bestvina, K Bromberg, K Fujiwara, Constructing group actions on quasi-trees and applications to mapping class groups · Zbl 1372.20029
[7] B H Bowditch, Relatively hyperbolic groups, Internat. J. Algebra Comput. 22 (2012) 1250016, 66 · Zbl 1259.20052 · doi:10.1142/S0218196712500166
[8] N Brodskiy, J Dydak, J Higes, A Mitra, Assouad-Nagata dimension via Lipschitz extensions, Israel J. Math. 171 (2009) 405 · Zbl 1187.54029 · doi:10.1007/s11856-009-0056-3
[9] N Brodskiy, J Dydak, M Levin, A Mitra, A Hurewicz theorem for the Assouad-Nagata dimension, J. Lond. Math. Soc. 77 (2008) 741 · Zbl 1154.54020 · doi:10.1112/jlms/jdn005
[10] N Brodskiy, J Higes, Assouad-Nagata dimension of tree-graded spaces · Zbl 1187.54029
[11] M Burger, A Iozzi, N Monod, Equivariant embeddings of trees into hyperbolic spaces, Int. Math. Res. Not. 2005 (2005) 1331 · Zbl 1077.22005 · doi:10.1155/IMRN.2005.1331
[12] S Buyalo, Asymptotic dimension of a hyperbolic space and the capacity dimension of its boundary at infinity, Algebra i Analiz 17 (2005) 70 · Zbl 1100.31006 · doi:10.1090/S1061-0022-06-00903-4
[13] S Buyalo, Capacity dimension and embedding of hyperbolic spaces into the product of trees, Algebra i Analiz 17 (2005) 42 · Zbl 1104.53037 · doi:10.1090/S1061-0022-06-00921-6
[14] S Buyalo, A Dranishnikov, V Schroeder, Embedding of hyperbolic groups into products of binary trees, Invent. Math. 169 (2007) 153 · Zbl 1157.57003 · doi:10.1007/s00222-007-0045-2
[15] S Buyalo, N Lebedeva, Dimensions of locally and asymptotically self-similar spaces, Algebra i Analiz 19 (2007) 60 · Zbl 1145.54029 · doi:10.1090/S1061-0022-07-00985-5
[16] S Buyalo, V Schroeder, Embedding of hyperbolic spaces in the product of trees, Geom. Dedicata 113 (2005) 75 · Zbl 1090.54029 · doi:10.1007/s10711-005-3124-9
[17] S Buyalo, V Schroeder, Elements of asymptotic geometry, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich (2007) · Zbl 1125.53036 · doi:10.4171/036
[18] S Buyalo, V Shrëder, The hyperbolic dimension of metric spaces, Algebra i Analiz 19 (2007) 93 · Zbl 1145.54030 · doi:10.1090/S1061-0022-07-00986-7
[19] Y de Cornulier, Dimension of asymptotic cones of Lie groups, J. Topol. 1 (2008) 342 · Zbl 1157.22003 · doi:10.1112/jtopol/jtm013
[20] F Dahmani, Combination of convergence groups, Geom. Topol. 7 (2003) 933 · Zbl 1037.20042 · doi:10.2140/gt.2003.7.933
[21] A Dranishnikov, On asymptotic dimension of amalgamated products and right-angled Coxeter groups, Algebr. Geom. Topol. 8 (2008) 1281 · Zbl 1176.20047 · doi:10.2140/agt.2008.8.1281
[22] A Dranishnikov, Cohomological approach to asymptotic dimension, Geom. Dedicata 141 (2009) 59 · Zbl 1175.20035 · doi:10.1007/s10711-008-9343-0
[23] A Dranishnikov, J Smith, On asymptotic Assouad-Nagata dimension, Topology Appl. 154 (2007) 934 · Zbl 1116.54020 · doi:10.1016/j.topol.2006.10.010
[24] C Dru\ctu, M Sapir, Tree-graded spaces and asymptotic cones of groups, Topology 44 (2005) 959 · Zbl 1101.20025 · doi:10.1016/j.top.2005.03.003
[25] J Dydak, J Higes, Asymptotic cones and Assouad-Nagata dimension, Proc. Amer. Math. Soc. 136 (2008) 2225 · Zbl 1147.54018 · doi:10.1090/S0002-9939-08-09149-1
[26] B Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998) 810 · Zbl 0985.20027 · doi:10.1007/s000390050075
[27] Ś R Gal, Asymptotic dimension and uniform embeddings, Groups Geom. Dyn. 2 (2008) 63 · Zbl 1192.20028 · doi:10.4171/GGD/31
[28] M Gromov, Asymptotic invariants of infinite groups (editors G A Niblo, M A Roller), London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1 · Zbl 0888.53047
[29] D Groves, J F Manning, Dehn filling in relatively hyperbolic groups, Israel J. Math. 168 (2008) 317 · Zbl 1211.20038 · doi:10.1007/s11856-008-1070-6
[30] J Higes, I Peng, Assouad-Nagata dimension of connected Lie groups, Math. Z. 273 (2013) 283 · Zbl 1259.22005 · doi:10.1007/s00209-012-1004-1
[31] D Hume, Direct embeddings of relatively hyperbolic groups with optimal \(\ell^p\) compression exponent · Zbl 1360.20036
[32] D Hume, Embedding mapping class groups into finite products of trees · Zbl 1423.20048
[33] D Hume, A Sisto, Embedding universal covers of graph manifolds in products of trees, to appear in Proc. Amer. Math. Soc. · Zbl 1326.20044
[34] I Kapovich, N Benakli, Boundaries of hyperbolic groups (editors S Cleary, R Gilman, A G Myasnikov, V Shpilrain), Contemp. Math. 296, Amer. Math. Soc. (2002) 39 · Zbl 1044.20028 · doi:10.1090/conm/296/05068
[35] U Lang, T Schlichenmaier, Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions, Int. Math. Res. Not. 2005 (2005) 3625 · Zbl 1095.53033 · doi:10.1155/IMRN.2005.3625
[36] Y Liu, Virtual cubulation of nonpositively curved graph manifolds · Zbl 1286.57002 · doi:10.1112/jtopol/jtt010
[37] J M Mackay, A Sisto, Quasi-hyperbolic planes in relatively hyperbolic groups
[38] P W Nowak, On exactness and isoperimetric profiles of discrete groups, J. Funct. Anal. 243 (2007) 323 · Zbl 1117.60008 · doi:10.1016/j.jfa.2006.10.011
[39] D Osin, Asymptotic dimension of relatively hyperbolic groups, Int. Math. Res. Not. 2005 (2005) 2143 · Zbl 1089.20028 · doi:10.1155/IMRN.2005.2143
[40] S D Pauls, The large scale geometry of nilpotent Lie groups, Comm. Anal. Geom. 9 (2001) 951 · Zbl 1005.53033
[41] P Przytycki, D T Wise, Mixed 3-manifolds are virtually special · Zbl 1331.57023
[42] A Sisto, Contracting elements and random walks · Zbl 1499.20108
[43] A Sisto, Projections and relative hyperbolicity, to appear in Enseign. Math. (2013) · Zbl 1309.20036
[44] S Wang, F Yu, Graph manifolds with non-empty boundary are covered by surface bundles, Math. Proc. Cambridge Philos. Soc. 122 (1997) 447 · Zbl 0899.57011 · doi:10.1017/S0305004197001709
[45] D Wise, The structure of groups with a quasiconvex hierarchy (2011)
[46] D T Wise, From riches to raags: 3-manifolds, right-angled Artin groups, and cubical geometry, CBMS Regional Conference Series in Mathematics 117, Published for the Conference Board of the Mathematical Sciences (2012) · Zbl 1278.20055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.