×

Nice group structure on the elementary orbit space of unimodular rows. (English) Zbl 1474.13018

Summary:
(1)
Let \(R\) be an affine algebra of dimension \(d\geq 5\) over \(\overline{\mathbb{F}}_p\) with \(p>3\). Then the group structure on \(\operatorname{Um}_d(R)/\operatorname{E}_d(R)\) is nice.
(2)
Let \(R\) be a commutative noetherian ring of dimension \(d\geq 2\) such that \(\text{E}_{d+1}(R)\) acts transitively on \(\operatorname{Um}_{d+1}(R)\). Then the group structure on \(\operatorname{Um}_{d+1}(R[X])/\text{E}_{d+1}(R [X])\) is nice.

MSC:

13C10 Projective and free modules and ideals in commutative rings
19D45 Higher symbols, Milnor \(K\)-theory
19G12 Witt groups of rings

References:

[1] Bass, H., Algebraic K-Theory (1968), Benjamin: Benjamin New York · Zbl 0174.30302
[2] Basu, R.; Rao, R. A., Injective stability for \(K_1\) of classical modules, J. Algebra, 323, 4, 867-877 (2010) · Zbl 1185.19001
[3] Chattopadhyay, P.; Rao, R. A., Elementary symplectic orbits and improved \(K_1\)-stability, J. K-Theory, 7, 389-403 (2011) · Zbl 1218.19001
[4] Basu, R.; Chattopadhyay, P.; Rao, R. A., Some remarks on symplectic injective stability, Proc. Am. Math. Soc., 139, 7, 2317-2325 (2011) · Zbl 1223.19001
[5] Fasel, J., Mennicke symbols, K-cohomology and a Bass-Kubota theorem, Trans. Am. Math. Soc., 361, 1, 191-208 (2015) · Zbl 1330.19003
[6] Garge, A.; Rao, R. A., A nice group structure on the orbit space of unimodular rows, K-Theory, 38, 2, 113-133 (2008) · Zbl 1143.13013
[7] Gupta, A.; Garge, A.; Rao, R. A., A nice group structure on the orbit space of unimodular rows—II, J. Algebra, 407, 201-223 (2014) · Zbl 1314.13019
[8] Gupta, A., Optimal injective stability for the symplectic \(K_1 S p\) group, J. Pure Appl. Algebra, 219, 5, 1336-1348 (2015) · Zbl 1338.13020
[9] S.K. Gupta, M.P. Murthy, Suslin’s work on linear groups over polynomial rings and Serre problem, Indian Statistical Institute, New Delhi. · Zbl 0453.13007
[10] van der Kallen, W., A module structure on certain orbit sets of unimodular rows, J. Pure Appl. Algebra, 57, 657-663 (1989) · Zbl 0665.18011
[11] van der Kallen, W., From Mennicke symbols to Euler class groups, (Algebra, Arithmetic and Geometry, Part I, II. Algebra, Arithmetic and Geometry, Part I, II, Mumbai, 2000. Algebra, Arithmetic and Geometry, Part I, II. Algebra, Arithmetic and Geometry, Part I, II, Mumbai, 2000, Tata Inst. Fund. Res. Stud. Math., vol. 16 (2002)), 341-354, Bombay · Zbl 1027.19006
[12] Keshari, M. K., Cancellation problem for projective modules over affine algebras, J. K-Theory, 3, 561-581 (2009) · Zbl 1180.13012
[13] Murthy, M. P., Zero cycles and projective modules, Ann. Math., 140, 405-434 (1994) · Zbl 0839.13007
[14] Rao, R. A., The Bass-Quillen conjecture in dimension three but characteristic \(\neq 2, 3\) via a question of A. Suslin, Invent. Math., 93, 3, 609-618 (1988) · Zbl 0652.13009
[15] Rao, R. A.; van der Kallen, W., Improved stability for \(\text{SK}_1\) and \(\text{WMS}_d\) of a non-singular affine algebra, K-Theory (Strasbourg, 1992). K-Theory (Strasbourg, 1992), Astérisque, 226, 411-420 (1992) · Zbl 0832.19002
[16] Rao, R. A., An elementary transformation of a special unimodular vector to its top coefficient vector, Proc. Am. Math. Soc., 93, 1, 21-24 (1985) · Zbl 0536.15003
[17] Rao, R. A.; Jose, S., A group structure on squares, Proc. Am. Math. Soc., 136, 4, 1181-1191 (2008) · Zbl 1139.13005
[18] Swan, R. G., A cancellation theorem for projective modules in metastable range, Invent. Math., 27, 23-43 (1974) · Zbl 0297.14003
[19] Vaserstein, L. N., On the stabilization of unitary and orthogonal groups over a ring with involution, Math. Sb., 81, 3, 307-326 (1970) · Zbl 0253.20066
[20] Vaserstein, L. N.; Suslin, A. A., Serre’s problem on projective modules, Math. USSR, Izv., 10, 5, 937-1001 (1976) · Zbl 0379.13009
[21] Weibel, C. A., Complete intersection points on affine varieties, Commun. Algebra, 12, 23-24, 3011-3051 (1984) · Zbl 0551.13004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.