×

Cancellation problem for projective modules over affine algebras. (English) Zbl 1180.13012

Let \(A\) be a ring of finite dimension, and let \(P\) be a projective \(A\)-module of finite rank. \(P\) is called cancellative if \(P\oplus A^m \cong Q\oplus A^m\) for some \(A\)-module \(Q\) implies that \(P\cong Q\). In case \(k\) is an algebraically closed field for which \(n!\) is invertible, and \(A\) a \(k\)-algebra of dimension \(n\), it is an open question (due to Mohan Kumar) whether any projective \(A\)-module of rank \(n-1\) is cancellative. The author gives an overview of known cases for which cancellativity holds, and gives an affirmative answer of Kumar’s question for some specific rings, in particular:
Let \(R\) be an affine \(k\)-algebra of dimension \(n-1\) and \(k\) algebraically closed such that \(n!\) is invertible in \(k\).
If \(A=R[T,T^{-1}] \), or \(A=R[T,f_1/f,\ldots,f_r/f]\) where \(f(T)\) is monic and \(f,f_1,\ldots,f_r\in R[T]\) is an \(R[T]\)-regular sequence, then \(A^{n-1}\) is cancellative. Furthermore, in the case that \(k=\bar{\mathbb{F}}_p\), then any projective \(A\)-algebra \(P\) of dimension \(n-1\) is cancellative.
(Note of the reviewer: in the abstract of the paper, the ring \(R\) is meant to be as described above.)

MSC:

13C10 Projective and free modules and ideals in commutative rings
13B25 Polynomials over commutative rings

References:

[1] DOI: 10.1070/IM1977v011n02ABEH001709 · Zbl 0378.13002 · doi:10.1070/IM1977v011n02ABEH001709
[2] Suslin, Sov. Math. Dokl. 17 pp 1160– (1976)
[3] DOI: 10.1007/BF01410752 · Zbl 0569.14006 · doi:10.1007/BF01410752
[4] DOI: 10.1016/j.jalgebra.2006.06.016 · Zbl 1117.13012 · doi:10.1016/j.jalgebra.2006.06.016
[5] DOI: 10.1016/j.jalgebra.2005.03.014 · Zbl 1087.13006 · doi:10.1016/j.jalgebra.2005.03.014
[6] DOI: 10.1016/j.jalgebra.2004.01.014 · doi:10.1016/j.jalgebra.2004.01.014
[7] Bochnak, Ergebnisse der Mathematik und ihrer Grenzgebiete 36 (1998)
[8] DOI: 10.1016/0021-8693(84)90061-9 · Zbl 0529.13005 · doi:10.1016/0021-8693(84)90061-9
[9] Bhatwadekar, JPAA 183 pp 17– (2003)
[10] DOI: 10.1023/A:1011839525245 · Zbl 1030.13004 · doi:10.1023/A:1011839525245
[11] Bass, IHES 22 pp 5– (1964) · Zbl 0248.18025 · doi:10.1007/BF02684689
[12] Serre, Topology 3 pp 264– (1968)
[13] Serre, Sem. Dubreil-Pisot 14 pp 1– (1960)
[14] DOI: 10.2307/2374645 · Zbl 0669.13005 · doi:10.2307/2374645
[15] DOI: 10.1007/BF01390008 · Zbl 0337.13011 · doi:10.1007/BF01390008
[16] DOI: 10.2307/2374448 · Zbl 0532.13008 · doi:10.2307/2374448
[17] DOI: 10.1007/BF01446885 · Zbl 0696.13007 · doi:10.1007/BF01446885
[18] Murthy, Proceedings of the international colloquium on Algebra, Arithmetic and Geometry pp 493– (2000)
[19] Kumar, Algebraic geometry and commutative algebra in honor of Masayoshi Nagata 1 pp 281– (1987)
[20] DOI: 10.2307/2374411 · Zbl 0594.13008 · doi:10.2307/2374411
[21] DOI: 10.1016/S0021-8693(05)80004-3 · Zbl 0839.13006 · doi:10.1016/S0021-8693(05)80004-3
[22] DOI: 10.1006/jabr.1993.1065 · Zbl 0796.13008 · doi:10.1006/jabr.1993.1065
[23] DOI: 10.2307/1997613 · Zbl 0404.13006 · doi:10.2307/1997613
[24] DOI: 10.1070/IM1976v010n05ABEH001822 · Zbl 0379.13009 · doi:10.1070/IM1976v010n05ABEH001822
[25] Suslin, Sov. Math. Dokl. 18 pp 1281– (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.