×

Emergent geometry in recursive renormalization group transformations. (English) Zbl 1473.81149

Summary: Holographic duality conjecture has been proposed to be a novel non-perturbative theoretical framework for the description of strongly correlated electrons. However, the duality transformation is not specified to cause ambiguity in the application of this theoretical machinery to condensed matter physics. In this study, we propose a prescription for the holographic duality transformation. Based on recursive renormalization group (RG) transformations, we obtain an effective field theory, which manifests the RG flow of an effective action through the introduction of an extra dimension. Resorting to this prescription, we show that RG equations of all coupling constants are reformulated as emergent geometry with an extra dimension. We claim that the present prescription serves as microscopic foundation for the application of the holographic duality conjecture to condensed matter physics.

MSC:

81T32 Matrix models and tensor models for quantum field theory
81V10 Electromagnetic interaction; quantum electrodynamics
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
82D20 Statistical mechanics of solids
81T12 Effective quantum field theories
83E15 Kaluza-Klein and other higher-dimensional theories

References:

[1] Maldacena, J. M., The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113 (1999) · Zbl 0969.81047
[2] Gubser, S. S.; Klebanov, I. R.; Polyakov, A. M., Gauge theory correlators from non-critical string theory, Phys. Lett. B, 428, 105 (1998) · Zbl 1355.81126
[3] Witten, E., Anti de sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048
[4] Bianchi, M.; Freedman, D. Z.; Skenderis, K., Holographic renormalization, Nucl. Phys. B, 631, 159 (2002) · Zbl 0995.81075
[5] de Boer, J.; Verlinde, E. P.; Verlinde, H. L., On the holographic renormalization group, J. High Energy Phys., 08, Article 003 pp. (2000) · Zbl 0989.81538
[6] Verlinde, E. P.; Verlinde, H. L., RG-flow, gravity and the cosmological constant, J. High Energy Phys., 05, Article 034 pp. (2000) · Zbl 0990.83549
[7] Aharony, O.; Gubser, S. S.; Maldacena, J.; Ooguri, H.; Oz, Y., Large N field theories, string theory and gravity, Phys. Rep., 323, 183 (2000) · Zbl 1368.81009
[8] Nozaki, M.; Ryu, S.; Takayanagi, T., Holographic geometry of entanglement renormalization in quantum field theories, J. High Energy Phys., 10, Article 193 pp. (2012) · Zbl 1397.81046
[9] Heemskerk, I.; Penedones, J.; Polchinski, J.; Sully, J., Holography from conformal field theory, J. High Energy Phys., 10, Article 079 pp. (2009)
[10] Heemskerk, I.; Polchinski, J., Holographic and Wilsonian renormalization groups, J. High Energy Phys., 06, Article 031 pp. (2011) · Zbl 1298.81181
[11] Faulkner, T.; Liu, H.; Rangamani, M., Integrating out geometry: holographic Wilsonian RG and the membrane paradigm, J. High Energy Phys., 08, Article 051 pp. (2011) · Zbl 1298.81173
[12] de Mello Koch, R.; Jevicki, A.; Jin, K.; Rodrigues, J. P., AdS_4/CFT_3 construction from collective fields, Phys. Rev. D, 83, Article 025006 pp. (2011)
[13] Douglas, M. R.; Mazzucato, L.; Razamat, S. S., Holographic dual of free field theory, Phys. Rev. D, 83, Article 071701 pp. (2011)
[14] Leigh, R. G.; Parrikar, O.; Weiss, A. B., The holographic geometry of the renormalization group and higher spin symmetries, Phys. Rev. D, 89, Article 106012 pp. (2014)
[15] Mintun, E.; Polchinski, J., Higher spin holography, RG, and the light cone
[16] Pastawski, F.; Yoshida, B.; Harlow, D.; Preskill, J., Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence, J. High Energy Phys., 06, Article 149 pp. (2015) · Zbl 1388.81094
[17] Wen, X.; Cho, G. Y.; Lopes, P. L.S.; Gu, Y.; Qi, X.-L.; Ryu, S., Holographic entanglement renormalization of topological insulators, Phys. Rev. B, 94, Article 075124 pp. (2016)
[18] Gu, Y.; Lee, C. H.; Wen, X.; Cho, G. Y.; Ryu, S.; Qi, X.-L., Holographic duality between (2+1)-dimensional quantum anomalous hall state and (3+1)-dimensional topological insulators, Phys. Rev. B, 94, Article 125107 pp. (2016)
[19] Faulkner, T.; Guica, M.; Hartman, T.; Myers, R. C.; Van Raamsdonk, M., Gravitation from entanglement in holographic CFTs, J. High Energy Phys., 03, Article 051 pp. (2014) · Zbl 1333.83141
[20] Faulkner, T.; Haehl, F. M.; Hijano, E.; Parrikar, O.; Rabideau, C.; Van Raamsdonk, M., Nonlinear gravity from entanglement in conformal field theories, J. High Energy Phys., 08, Article 057 pp. (2017) · Zbl 1381.83099
[21] Czech, B., Einstein equations from varying complexity, Phys. Rev. Lett., 120, Article 031601 pp. (2018)
[22] Kim, K.-S.; Park, C., Emergent geometry from field theory: Wilson’s renormalization group revisited, Phys. Rev. D, 93, Article 121702 pp. (2016)
[23] Vidal, G., Entanglement renormalization, Phys. Rev. Lett., 99, Article 220405 pp. (2007)
[24] Haegeman, J.; Osborne, T. J.; Verschelde, H.; Verstraete, F., Entanglement renormalization for quantum fields in real space, Phys. Rev. Lett., 110, Article 100402 pp. (2013)
[25] Vidal, G., (Carr, L. D., Understanding Quantum Phase Transitions (2010), Taylor & Francis: Taylor & Francis Boca Raton)
[26] Evenbly, G.; Vidal, G., (Avella, A.; Mancini, F., Strongly Correlated Systems. Numerical Methods. Strongly Correlated Systems. Numerical Methods, Springer Series in Solid-State Sciences, vol. 176 (2013), Springer-Verlag: Springer-Verlag Berlin, Heidelberg), Chap. 4
[27] Evenbly, G.; Vidal, G., Tensor network states and geometry, J. Stat. Phys., 145, 891 (2011) · Zbl 1231.82021
[28] Swingle, B., Entanglement renormalization and holography, Phys. Rev. D, 86, Article 065007 pp. (2012)
[29] Lee, Sung-Sik, Background independent holographic description: from matrix field theory to quantum gravity, J. High Energy Phys., 10, Article 160 pp. (2012) · Zbl 1397.81443
[30] Lee, Sung-Sik, Quantum renormalization group and holography, J. High Energy Phys., 01, Article 076 pp. (2014) · Zbl 1437.81059
[31] Lunts, Peter; Bhattacharjee, Subhro; Miller, Jonah; Schnetter, Erik; Baek Kim, Yong; Lee, Sung-Sik, Ab initio holography, J. High Energy Phys., 08, Article 107 pp. (2015) · Zbl 1388.81445
[32] Kim, K.-S.; Park, M.; Cho, J.; Park, C., Emergent geometric description for a topological phase transition in the Kitaev superconductor model, Phys. Rev. D, 96, Article 086015 pp. (2017)
[33] Kim, Ki-Seok; Bum Chung, Suk; Park, Chanyong; Han, Jae-Ho, Emergent holographic description for the Kondo effect: comparison with Bethe ansatz, Phys. Rev. D, 99, Article 105012 pp. (2019)
[34] Kim, Ki-Seok; Ryu, Shinsei, Entanglement transfer from quantum matter to classical geometry in an emergent holographic dual description of a scalar field theory · Zbl 1466.83102
[35] Kim, Ki-Seok, Emergent dual holographic description for interacting Dirac fermions in the large N limit
[36] Kim, Ki-Seok, Geometric encoding of renormalization group β-functions in an emergent holographic dual description, Phys. Rev. D, 102, Article 026022 pp. (2020)
[37] Peskin, M. E.; Schroeder, D. V., An Introduction to Quantum Field Theory (1995), Westview: Westview Boulder
[38] Birrell, N. D.; Davies, P. C.W., Quantum Fields in Curved Space (1982), Cambridge University Press: Cambridge University Press New York · Zbl 0476.53017
[39] Plischke, M.; Bergersen, B., Equilibrium Statistical Physics (2006), World Scientific Publishing: World Scientific Publishing London · Zbl 1130.82001
[40] Sakharov, A., Vacuum quantum fluctuations in curved space and the theory of gravitation, Sov. Phys. Dokl.. Sov. Phys. Dokl., Gen. Relativ. Gravit., 32, 365 (2000), and reprinted in · Zbl 0971.83005
[41] Visser, M., Sakharov’s induced gravity: a modern perspective, Mod. Phys. Lett. A, 17, 977 (2002), and references therein · Zbl 1083.83544
[42] Cardy, J., The \(T \overline{T}\) deformation of quantum field theory as random geometry, J. High Energy Phys., 10, Article 186 pp. (2018) · Zbl 1402.81216
[43] Lee, Sung-Sik, Emergent gravity from relatively local Hamiltonians and a possible resolution of the black hole information puzzle, J. High Energy Phys., 10, Article 043 pp. (2018) · Zbl 1402.83082
[44] Changing the integral variable as \(x = \sqrt{ y^2 + \frac{ m^2 - i \widetilde{\varphi} ( z )}{ \epsilon}} z\) in the first equation, we obtain \(\partial_z \ln g^{\tau \tau}(z) = 2 \int_{- \infty}^\infty \frac{ d y}{ 2 \pi} \frac{ y^2}{ \sqrt{ y^2 + \frac{ m^2 - i \widetilde{\varphi} ( z )}{ \epsilon}}} \int_0^\infty \frac{ d z}{ 2 \pi} \frac{ 1}{ z^2 + 1} \). Considering the change of the integral variable as \(y = \sqrt{ \frac{ m^2 - i \widetilde{\varphi} ( z )}{ \epsilon}} w\), we obtain \(\partial_z \ln g^{\tau \tau}(z) = \frac{ 4}{ \epsilon}(\int_0^\infty \frac{ d w}{ 2 \pi} \frac{ w^2}{ \sqrt{ w^2 + 1}})(\int_0^\infty \frac{ d z}{ 2 \pi} \frac{ 1}{ z^2 + 1}) [ m^2 - i \widetilde{\varphi}(z)]\). Since the w integral is divergent, we introduce a UV cut-off scale Λ, resulting in Eq, (54). This cut-off scale defines our UV quantum field theory
[45] Kitaev, A. Y., Fault-tolerant quantum computation by anyons, Ann. Phys. (Amsterdam), 303, 2 (2003) · Zbl 1012.81006
[46] Ryu, S.; Takayanagi, T., Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett., 96, Article 181602 pp. (2006) · Zbl 1228.83110
[47] Ryu, S.; Takayanagi, T., Aspects of holographic entanglement entropy, J. High Energy Phys., 08, Article 045 pp. (2006)
[48] Calabrese, P.; Cardy, J., Entanglement entropy and quantum field theory, J. Stat. Mech., Article P06002 pp. (2004) · Zbl 1082.82002
[49] Calabrese, P.; Cardy, J., Entanglement entropy and conformal field theory, J. Phys. A, 42, Article 504005 pp. (2009) · Zbl 1179.81026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.