×

A Fuchsian viewpoint on the weak null condition. (English) Zbl 1473.35383

Summary: We analyze systems of semilinear wave equations in \(3 + 1\) dimensions whose associated asymptotic equation admit bounded solutions for suitably small choices of initial data. Under this special case of the weak null condition, which we refer to as the bounded weak null condition, we prove the existence of solutions to these systems of wave equations on neighborhoods of spatial infinity under a small initial data assumption. Existence is established using the Fuchsian method. This method involves transforming the wave equations into a Fuchsian equation defined on a bounded spacetime region. The existence of solutions to the Fuchsian equation then follows from an application of the existence theory developed in [F. Beyer et al., Commun. Partial Differ. Equations 46, No. 5, 864–934 (2021; Zbl 1479.35088)]. This, in turn, yields, by construction, solutions to the original system of wave equations on a neighborhood of spatial infinity.

MSC:

35Q07 Fuchsian PDEs
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
35B40 Asymptotic behavior of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence

Citations:

Zbl 1479.35088

References:

[1] Alinhac, S., An example of blowup at infinity for a quasilinear wave equation, (Gilles, Lebeau, Autour de l’analyse microlocale - Volume en l’honneur de Jean-Michel Bony. Autour de l’analyse microlocale - Volume en l’honneur de Jean-Michel Bony, Astérisque, vol. 284 (2003), Société Mathématique de France), 1-91, MR 2003417 · Zbl 1053.35097
[2] Alinhac, S., Semilinear hyperbolic systems with blowup at infinity, Indiana Univ. Math. J., 55, 1209-1232 (2006) · Zbl 1122.35068
[3] Ames, E.; Beyer, F.; Isenberg, J.; LeFloch, P. G., Quasilinear hyperbolic Fuchsian systems and AVTD behavior in \(T^2\)-symmetric vacuum spacetimes, Ann. Henri Poincaré, 14, 6, 1445-1523 (2013) · Zbl 1272.83009
[4] Ames, E.; Beyer, F.; Isenberg, J.; LeFloch, P. G., Quasilinear symmetric hyperbolic Fuchsian systems in several space dimensions, (Agranovsky, M.; Ben-Artzi, Matania; Karp, Lavi; Maz’ya, Vladimir; Reich, Simeon; Shoikhet, David; Weinstein, Gilbert; Zalcman, Lawrence, Complex Analysis and Dynamical Systems V, vol. 591 (2013), American Mathematical Society: American Mathematical Society Providence, Rhode Island), 25-44 · Zbl 1320.35193
[5] Ames, E.; Beyer, F.; Isenberg, J.; LeFloch, P. G., A class of solutions to the Einstein equations with AVTD behavior in generalized wave gauges, J. Geom. Phys., 121, 42-71 (2017) · Zbl 1376.83006
[6] Andersson, L.; Rendall, A. D., Quiescent cosmological singularities, Commun. Math. Phys., 218, 3, 479-511 (2001) · Zbl 0979.83036
[7] Beyer, F.; Doulis, G.; Frauendiener, J.; Whale, B., The spin-2 equation on Minkowski background, (García-Parrado, A.; Mena, F. C.; Moura, F.; Vaz, E., Berlin, Heidelberg. Berlin, Heidelberg, Progress in Mathematical Relativity, Gravitation and Cosmology (2014), Springer Berlin Heidelberg), 465-468 · Zbl 1308.83014
[8] Beyer, F.; LeFloch, P. G., Second-order hyperbolic Fuchsian systems and applications, Class. Quantum Gravity, 27, 24, Article 245012 pp. (2010) · Zbl 1206.83025
[9] Beyer, F.; LeFloch, P. G., Second-order hyperbolic Fuchsian systems: asymptotic behavior of geodesics in Gowdy spacetimes, Phys. Rev. D, 84, 8, Article 084036 pp. (2011)
[10] Beyer, F.; LeFloch, P. G., Self-gravitating fluid flows with Gowdy symmetry near cosmological singularities, Commun. Partial Differ. Equ., 42, 8, 1199-1248 (2017) · Zbl 1382.35299
[11] Beyer, F.; Oliynyk, T. A.; Olvera-Santamaría, J. A., The Fuchsian approach to global existence for hyperbolic equations, Commun. Partial Differ. Equ., 46, 864-934 (2021) · Zbl 1479.35088
[12] Bingbing, D.; Yingbo, L.; Huicheng, Y., The small data solutions of general 3d quasilinear wave equations. i, SIAM J. Math. Anal., 47, 6, 4192-4228 (2015) · Zbl 1343.35168
[13] Choquet-Bruhat, Y.; Isenberg, J., Half polarized \(U(1)\)-symmetric vacuum spacetimes with AVTD behavior, J. Geom. Phys., 56, 8, 1199-1214 (2006) · Zbl 1113.83006
[14] Choquet-Bruhat, Y.; Isenberg, J.; Moncrief, V., Topologically general \(U(1)\) symmetric vacuum space-times with AVTD behavior, Nuovo Cimento B, 119, 7-9, 625-638 (2004)
[15] Claudel, C. M.; Newman, K. P., The Cauchy problem for quasi-linear hyperbolic evolution problems with a singularity in the time, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci., 454, 1972, 1073-1107 (1998) · Zbl 0916.35064
[16] Dafermos, M.; Rodnianski, I., A new physical-space approach to decay for the wave equation with applications to black hole spacetimes, ((2010)), 421-432 · Zbl 1211.83019
[17] Damour, T.; Henneaux, M.; Rendall, A. D.; Weaver, M., Kasner-like behaviour for subcritical Einstein-matter systems, Ann. Henri Poincaré, 3, 6, 1049-1111 (2002) · Zbl 1011.83038
[18] Deng, Y.; Pusateri, F., On the global behavior of weak null quasilinear wave equations (2018), preprint
[19] Doulis, G.; Frauendiener, J., The second order spin-2 system in flat space near space-like and null-infinity, Gen. Relativ. Gravit., 45, 1365-1385 (2013) · Zbl 1271.83005
[20] Fajman, D.; Oliynyk, T. A.; Wyatt, Z., Stabilizing relativistic fluids on spacetimes with non-accelerated expansion, Commun. Math. Phys., 383, 401-426 (2021) · Zbl 1464.83025
[21] Frauendiener, J.; Hennig, J., Fully pseudospectral solution of the conformally invariant wave equation near the cylinder at spacelike infinity, Class. Quantum Gravity, 31, Article 085010 pp. (2014) · Zbl 1292.83003
[22] Friedrich, H., On the regular and the asymptotic characteristic initial value problem for Einstein’s vacuum field equations, Proc. Roy. Soc. Lond. A, 375, 169-184 (1981) · Zbl 0454.58017
[23] Friedrich, H., On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure, Commun. Math. Phys., 107, 587-609 (1986) · Zbl 0659.53056
[24] Friedrich, H., On the global existence and the asymptotic behavior of solutions to the Einstein-Maxwell-Yang-Mills equations, J. Differ. Geom., 34, 275-345 (1991) · Zbl 0737.53070
[25] Friedrich, H., Gravitational fields near space-like and null infinity, J. Geom. Phys., 24, 83-163 (1998) · Zbl 0896.53053
[26] Friedrich, H., Spin-2 fields on Minkowski space near spacelike and null infinity, Class. Quantum Gravity, 20, 101-117 (2002) · Zbl 1017.83003
[27] Heinzle, J. M.; Sandin, P., The initial singularity of ultrastiff perfect fluid spacetimes without symmetries, Commun. Math. Phys., 313, 2, 385-403 (2012) · Zbl 1247.83142
[28] Hidano, K.; Yokoyama, K., Global existence for a system of quasi-linear wave equations in 3D satisfying the weak null condition, Int. Math. Res. Not., 2020, 1, 39-70 (2018) · Zbl 1479.35572
[29] Hörmander, L., The Lifespan of Classical Solutions of Non-linear Hyperbolic Equations, 214-280 (1987), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg · Zbl 0632.35045
[30] Hörmander, L., Ectures on Nonlinear Hyperbolic Differential Equations (1997), Springer Verlag: Springer Verlag Berlin · Zbl 0881.35001
[31] Isenberg, J.; Kichenassamy, S., Asymptotic behavior in polarized \(T^2\)-symmetric vacuum space-times, J. Math. Phys., 40, 1, 340-352 (1999) · Zbl 1061.83512
[32] Isenberg, J.; Moncrief, V., Asymptotic behaviour in polarized and half-polarized \(U(1)\) symmetric vacuum spacetimes, Class. Quantum Gravity, 19, 21, 5361-5386 (2002) · Zbl 1025.83008
[33] Katayama, S.; Matoba, T.; Sunagawa, H., Semilinear hyperbolic systems violating the null condition, Math. Ann., 277-312 (2015) · Zbl 1320.35203
[34] Keir, J., The weak null condition and global existence using the p-weighted energy method (2018), preprint
[35] Keir, J., Global existence for systems of nonlinear wave equations with bounded, stable asymptotic systems (2019), preprint
[36] Kichenassamy, S., Fuchsian Reduction, Progress in Nonlinear Differential Equations and Their Applications, vol. 71 (2007), Birkhäuser Boston: Birkhäuser Boston Boston, MA · Zbl 1169.35002
[37] Kichenassamy, S.; Rendall, A. D., Analytic description of singularities in Gowdy spacetimes, Class. Quantum Gravity, 15, 5, 1339-1355 (1998) · Zbl 0949.83050
[38] Klainerman, S., Global existence for nonlinear wave equations, Commun. Pure Appl. Math., 33, 43-101 (1980) · Zbl 0405.35056
[39] Lax, P. D., Hyperbolic Partial Differential Equations (2006), AMS/CIMS · Zbl 1113.35002
[40] LeFloch, P. G.; Wei, Changhua, The nonlinear stability of self-gravitating irrotational Chaplygin fluids in a FLRW geometry, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 38, 3, 787-814 (2021) · Zbl 1464.83026
[41] Lindblad, H., Global solutions of quasilinear wave equations, Am. J. Math., 130, 115-157 (2008) · Zbl 1144.35035
[42] Lindblad, H.; Rodnianski, I., The weak null condition for Einstein’s equations, C. R. Math., 336, 901-906 (2003) · Zbl 1045.35101
[43] Lindblad, H.; Rodnianski, I., Global existence for the Einstein vacuum equations in wave coordinates, Commun. Math. Phys., 256, 1, 43-110 (2005) · Zbl 1081.83003
[44] Lindblad, H.; Rodnianski, I., The global stability of Minkowski space-time in harmonic gauge, Ann. Math., 171, 1401-1477 (2010) · Zbl 1192.53066
[45] Liu, C.; Oliynyk, T. A., Cosmological Newtonian limits on large spacetime scales, Commun. Math. Phys., 364, 1195-1304 (2018) · Zbl 1402.83116
[46] Liu, C.; Oliynyk, T. A., Newtonian limits of isolated cosmological systems on long time scales, Ann. Henri Poincaré, 19, 2157-2243 (2018) · Zbl 1394.83004
[47] Liu, C.; Wei, C., Future stability of the FLRW spacetime for a large class of perfect fluids (2019), preprint
[48] Macedo, R. P.; Valiente Kroon, J. A., Spectral methods for the spin-2 equation near the cylinder at spatial infinity, Class. Quantum Gravity, 35, 12, Article 125007 pp. (2018) · Zbl 1391.83018
[49] Oliynyk, T. A., Future stability of the FLRW fluid solutions in the presence of a positive cosmological constant, Commun. Math. Phys., 346, 293-312 (2016), for a corrected version · Zbl 1346.83023
[50] Oliynyk, T. A., Future global stability for relativistic perfect fluids with linear equations of state \(p = K \rho\) where \(1 / 3 < K < 1 / 2 (2020)\), SIAM J. Math. Anal. (accepted), preprint
[51] Oliynyk, T. A.; Künzle, H. P., Local existence proofs for the boundary value problem for static spherically symmetric Einstein-Yang-Mills fields with compact gauge groups, J. Math. Phys., 43, 2363-2393 (2002) · Zbl 1059.83005
[52] Oliynyk, T. A.; Künzle, H. P., On all possible static spherically symmetric EYM solitons and black holes, Class. Quantum Gravity, 19, 457-482 (2002) · Zbl 0987.83032
[53] Rendall, A. D., Fuchsian analysis of singularities in Gowdy spacetimes beyond analyticity, Class. Quantum Gravity, 17, 16, 3305-3316 (2000) · Zbl 0967.83021
[54] Rendall, A. D., Asymptotics of solutions of the Einstein equations with positive cosmological constant, Ann. Henri Poincaré, 5, 6, 1041-1064 (2004) · Zbl 1061.83008
[55] Rendall, A. D., Fuchsian methods and spacetime singularities, Class. Quantum Gravity, 21, 3, S295-S304 (2004) · Zbl 1040.83031
[56] Ståhl, F., Fuchsian analysis of \(S^2 \times S^1\) and \(S^3\) Gowdy spacetimes, Class. Quantum Gravity, 19, 17, 4483-4504 (2002) · Zbl 1028.83014
[57] Taylor, M. E., Partial Differential Equations III: Nonlinear Equations (1996), Springer · Zbl 0869.35004
[58] Wei, C., Stabilizing effect of the power law inflation on isentropic relativistic fluids, J. Differ. Equ., 265, 3441-3463 (2018) · Zbl 1394.35341
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.