×

Variational \(p\)-harmonious functions: existence and convergence to \(p\)-harmonic functions. (English) Zbl 1473.35222

Summary: In a recent paper, the last three authors showed that a game-theoretic \(p\)-harmonic function \(v\) is characterized by an asymptotic mean value property with respect to a kind of mean value \(\nu_p^r[v](x)\) defined variationally on balls \(B_r(x)\). In this paper, in a domain \(\Omega \subset \mathbb{R}^N\), \(N\ge 2\), we consider the operator \(\mu_p^\varepsilon \), acting on continuous functions on \(\overline{\Omega } \), defined by the formula \(\mu_p^\varepsilon [v](x)=\nu^{r_{\varepsilon}(x)}_p[v](x)\), where \(r_\varepsilon (x)=\min [\varepsilon ,\operatorname{dist}(x,\Gamma )]\) and \(\Gamma\) denotes the boundary of \(\Omega\). We first derive various properties of \(\mu^\varepsilon_p\) such as continuity and monotonicity. Then, we prove the existence and uniqueness of a function \(u^\varepsilon \in C(\overline{\Omega })\) satisfying the Dirichlet-type problem: \[ u(x)=\mu_p^\varepsilon [u](x)\text{ for every } x\in \Omega,\quad u=g \text{ on } \Gamma, \] for any given function \(g\in C(\Gamma )\). This result holds, if we assume the existence of a suitable notion of barrier for all points in \(\Gamma \). That \(u^\varepsilon\) is what we call the variational \(p\)-harmonious function with Dirichlet boundary data \(g\), and is obtained by means of a Perron-type method based on a comparison principle. We then show that the family \(\{ u^\varepsilon \}_{\varepsilon >0}\) gives an approximation for the viscosity solution \(u\in C(\overline{\Omega })\) of \[ \Delta_p^G u=0 \text{ in } \Omega, \quad u=g \text{ on } \Gamma, \] where \(\Delta_p^G\) is the so-called game-theoretic (or homogeneous) \(p\)-Laplace operator. In fact, we prove that \(u^\varepsilon\) converges to \(u\), uniformly on \(\overline{\Omega }\) as \(\varepsilon \rightarrow 0\).

MSC:

35J60 Nonlinear elliptic equations
35K55 Nonlinear parabolic equations
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35K92 Quasilinear parabolic equations with \(p\)-Laplacian

References:

[1] Alber, YI, A bound for the modulus of continuity for metric projectiond in a uniformly convex and uniformly smooth Banach space, J. Approx. Theory, 85, 237-249 (1996) · Zbl 0863.47032 · doi:10.1006/jath.1996.0040
[2] Arroyo, A.; Heino, J.; Parviainen, M., Tug-of-war games with varying probabilities and the normalized \(p(x)\)-Laplacian, Commun. Pure Appl. Anal., 16, 915-944 (2017) · Zbl 1359.35062 · doi:10.3934/cpaa.2017044
[3] Barles, G.; Burdeau, J., The Dirichlet problem for semilinear second-order degenerate elliptic equations and applications to stochastic exit time control problems, Commun. Partial Differ. Equ., 20, 129-178 (1995) · Zbl 0826.35038 · doi:10.1080/03605309508821090
[4] Barles, G.; Perthame, B., Discontinuous solutions of deterministic optimal stopping time problems, RAIRO Modél. Math. Anal. Numér., 21, 557-579 (1987) · Zbl 0629.49017 · doi:10.1051/m2an/1987210405571
[5] Barles, G.; Perthame, B., Exit time problems in optimal control and vanishing viscosity method, SIAM J. Control Optim., 26, 1133-1148 (1988) · Zbl 0674.49027 · doi:10.1137/0326063
[6] Barles, G.; Souganidis, PE, Convergence of approximation schemes for fully nonlinear second order equations, Asymptot. Anal., 4, 271-283 (1991) · Zbl 0729.65077 · doi:10.3233/ASY-1991-4305
[7] Codenotti, L.; Lewicka, M.; Manfredi, JJ, Discrete approximations to the double-obstacle problem and optimal stopping of tug-of-war games, Trans. Amer. Math. Soc., 369, 7387-7403 (2017) · Zbl 1380.35113 · doi:10.1090/tran/6962
[8] Crandall, MG; Ishii, H.; Lions, PL, Users guide to viscosity \(p\)-solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27, 1-67 (1992) · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[9] del Teso, F., Manfredi, J. J., Parviainen, M.: Convergence of dynamic programming principles for the \(p\)-Laplacian, Adv. Calc. Var. (2020). (arXiv:1808.10154v3 [math.AP] 17 Mar 2020)
[10] Falcone, M.; Finzi, VS; Giorgi, T.; Smits, RG, A semi-Lagrangian scheme for the game \(p\)-Laplacian via \(p\)-averaging, Appl. Numer. Math., 73, 63-80 (2013) · Zbl 1320.65151 · doi:10.1016/j.apnum.2012.11.006
[11] Hartenstine, D.; Rudd, M., Perrons method for \(p\)-harmonious functions, Electron. J. Differ. Equ., 2016, 1-12 (2016) · Zbl 1418.92147 · doi:10.1186/s13662-015-0739-5
[12] Hartenstine, D.; Rudd, M., Statistical functional equations and \(p\)-harmonious functions, Adv. Nonlinear Stud., 13, 191-207 (2013) · Zbl 1277.35188 · doi:10.1515/ans-2013-0111
[13] Hartikainen, H.: A dynamic programming principle with continuous solutions related to the \(p\)-Laplacian \(1<p < \infty \). Differ. Int. Equ. 29, 583-600 (2016) · Zbl 1374.35020
[14] Heinonen, J.; Kilpeläinen, T.; Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations (2006), Mineola: Dover Publications Inc, Mineola · Zbl 1115.31001
[15] Ishii, H., A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4, 16, 105-135 (1989) · Zbl 0701.35052
[16] Ishiwata, M.; Magnanini, R.; Wadade, H., A natural approach to the asymptotic mean value property for the \(p\)-Laplacian, Calc. Var. Partial Differ. Equ., 56, 56-97 (2017) · Zbl 1378.35147 · doi:10.1007/s00526-017-1188-7
[17] Juutinen, P.; Lindqvist, P.; Manfredi, JJ, On the equivalence of viscosity \(p\)-solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal., 33, 699-717 (2001) · Zbl 0997.35022 · doi:10.1137/S0036141000372179
[18] Koike, S., A Beginners Guide to the Theory of Viscosity \(p\)-Solutions, MSJ Memoirs (2004), Tokyo: Mathematical Society of Japan, Tokyo · Zbl 1056.49027
[19] Le Gruyer, E., On absolutely minimizing Lipschitz extensions and PDE \({\Delta }_\infty (u)=0\), NoDEA Nonlinear Differ. Equ. Appl., 14, 29-55 (2007) · Zbl 1154.35055 · doi:10.1007/s00030-006-4030-z
[20] Lewicka, M.; Manfredi, JJ, The obstacle problem for the \(p\)-Laplacian via optimal stopping of tug-of-war games, Probab. Theory Rel., 167, 349-378 (2017) · Zbl 1358.60058 · doi:10.1007/s00440-015-0684-y
[21] Lewicka, M.; Manfredi, JJ; Ricciotti, D., Random walks and random tug of war in the Heisenberg group, Math. Ann., 377, 797-846 (2020) · Zbl 1467.60032 · doi:10.1007/s00208-019-01853-0
[22] Luiro, H.; Parviainen, M., Regularity for nonlinear stochastic games, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35, 1435-1456 (2018) · Zbl 1398.91058 · doi:10.1016/j.anihpc.2017.11.009
[23] Luiro, H.; Parviainen, M.; Saksman, E., On the existence and uniqueness of \(p\)-harmonious functions, Differ. Int. Equ., 27, 201-216 (2014) · Zbl 1324.49029
[24] Manfredi, JJ; Parviainen, M.; Rossi, JD, An asymptotic mean value characterization for \(p\)-harmonic functions, Proc. Amer. Math. Sco., 138, 881-889 (2010) · Zbl 1187.35115 · doi:10.1090/S0002-9939-09-10183-1
[25] Manfredi, J. J.; Parviainen, M.; Rossi, J. D., On the definition and properties of \(p\)-harmonious functions, Ann. Sc. Norm. Super. Pisa Cl. Sci., 5, 11, 215-241 (2012) · Zbl 1252.91014
[26] Manfredi, JJ; Stroffolini, B., Convergence of the natural \(p\)-means for the \(p\)-Laplacian, ESAIM Control Optim. Calc. Var., 27, 1-17 (2021) · Zbl 1479.35486 · doi:10.1051/cocv/2021026
[27] Noah, SG, The median of a continuous function, Real Anal. Exchange, 33, 269-274 (2008) · Zbl 1142.60005 · doi:10.14321/realanalexch.33.1.0269
[28] Peres, Y.; Sheffield, S., Tug-of-war with noise?: a game-theoretic view of the \(p\)-Laplacian, Duke Math. J., 145, 91-120 (2008) · Zbl 1206.35112 · doi:10.1215/00127094-2008-048
[29] Peres, Y.; Schramm, O.; Sheffield, S.; Scott, DB, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22, 167-210 (2009) · Zbl 1206.91002 · doi:10.1090/S0894-0347-08-00606-1
[30] Rudin, W., Principles of Mathematical Analysis (1976), New York: McGraw-Hill, New York · Zbl 0346.26002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.