×

Surface groups in the group of germs of analytic diffeomorphisms in one variable. (English) Zbl 1473.30024

Let \(\mathbb{C}\) be the field of complex numbers, and \(\textsf{Diff}(\mathbb{C},0)\) the group of germs of analytic diffeomorphisms at the origin. Choosing a local coordinate near the origin, any \(f \in \textsf{Diff}(\mathbb{C},0)\) is determined by a power series of coefficients \(a_i\). Taking all \(a_i \in \mathbb{R}\) we have \(\textsf{Diff}(\mathbb{R},0)\), a subgroup of \(\textsf{Diff}(\mathbb{C},0)\). The purpose of the paper under review is to prove the following
Theorem. Let \(\Gamma_g\) be the fundamental group of a closed orientable surface of genus \(g\), or of a closed non-orientable surface of genus \(g \geq 4\). Then, \(\Gamma_g\) embeds in the group \(\textsf{Diff}(\mathbb{R},0)\), and hence in \(\textsf{Diff}(\mathbb{C},0)\).
The article is divided into four parts. The first three of them provide three different proofs of the theorem.
The first proof runs through Sections 2 and 3 (for orientable surface groups) and 4 (for non-orientable surface groups). The proof uses the fact that the fundamental group of an orientable surface is fully-residually free. After proving that \(\Gamma_0\) and \(\Gamma_1\) satisfy trivially the thesis, in Theorem 3.5 it is proved that \(\Gamma_g\) embeds in \(\Gamma_2\) for \(g \geq 2\), so restricting to study the case \(g=2\), for which an explicit injective morphism \(\Gamma_2 \rightarrow \textsf{Diff}(\mathbb{R},0)\) is defined. The corresponding result for non-orientable surface groups with \(g \geq 4\) is obtained in Theorem 4.1, which splits in two cases, even and odd genus. It is also noted that the method does not apply for \(g=3\).
The second proof is based on the construction of a group topology in \(\textsf{Diff}(\mathbb{C},0)\). This is introduced in Section 5, and used in Section 6 for the proof, restricted “for simplicity” to orientable surface groups for \(g=2\), but considering a complete field \(\mathbf{k}\) instead of \(\mathbb{C}\).
Finally, a third \(p\)-adic proof is obtained in Section 7 for \(\Gamma_2\). Section 8 is devoted to some consequences of the result, and to present a couple of open questions, for instance, does there exist an embedding of \(\Gamma_2\) into the group of analytic diffeomorphisms of \(\mathbb{R}/ \mathbb{Z}\) fixing the origin? A final appendix studies free groups in \(\textsf{Diff}(\mathbb{C},0)\) and \(\textsf{Diff}(\mathbf{k},0)\).

MSC:

30F10 Compact Riemann surfaces and uniformization
20F34 Fundamental groups and their automorphisms (group-theoretic aspects)
37C85 Dynamics induced by group actions other than \(\mathbb{Z}\) and \(\mathbb{R}\), and \(\mathbb{C}\)
57M60 Group actions on manifolds and cell complexes in low dimensions

References:

[1] G. Baumslag, On generalised free products.Math. Z.78(1962), 423-438. Zbl 0104.24402 MR 0140562 · Zbl 0104.24402
[2] M. Berthier, D. Cerveau and A. Lins Neto, Sur les feuilletages analytiques réels et le problème du centre.J. Differential Equations131(1996), 244- 266.Zbl 0886.58090 MR 1419014 · Zbl 0886.58090
[3] E. Breuillard, T. Gelander, J. Souto and P. Storm, Dense embeddings of surface groups.Geom. Topol.10(2006), 1373-1389.Zbl 1132.22011 MR 2255501 · Zbl 1132.22011
[4] A. Brudnyi, Some algebraic aspects of the center problem for ordinary differential equations.Qual. Theory Dyn. Syst.9(2010), 9-28.Zbl 1202.37111 MR 2737360 · Zbl 1202.37111
[5] Subgroups of the group of formal power series with the big powers condition. PreprintarXiv:1908.04918(2019).
[6] H. W. Broer and F. M. Tangerman, From a differentiable to a real analytic perturbation theory, applications to the Kupka Smale theorems.Ergodic Theory Dynam. Systems6(1986), 345-362.Zbl 0582.58019 MR 0863199 · Zbl 0582.58019
[7] R. Camina, The Nottingham group. InNew horizons in pro-pgroups, vol. 184 ofProgr. Math.Birkhäuser Boston, Boston, MA (2000), pp. 205-221. Zbl 0977.20020 MR 1765121 · Zbl 0945.00009
[8] D. Cerveau, Quelques problèmes en géométrie feuilletée pour les 60 années de l’IMPA.Bull. Braz. Math. Soc. (N.S.)44(2013), 653-679.Zbl 1333.37061 MR 3167127 · Zbl 1333.37061
[9] C. Champetier and V. Guirardel, Limit groups as limits of free groups.Israel J. Math.146(2005), 1-75.Zbl 1103.20026 MR 2151593 · Zbl 1103.20026
[10] H. Eynard-Bontemps and A. Navas, Mather invariant, distortion, and conjugates for diffeomorphisms of the interval. Preprint,arXiv:1912.09305 (2019), 1-59.
[11] A. M. W. Glass, The ubiquity of free groups.Math. Intelligencer14(1992), 54-57.Zbl 0791.20001 MR 1184319 · Zbl 0791.20001
[12] M. Herman and J.-C. Yoccoz, Generalizations of some theorems of small divisors to non-Archimedean fields. InGeometric dynamics (Rio de Janeiro, 1981), vol. 1007 ofLecture Notes in Math.Springer, Berlin (1983). pp. 408-447.Zbl 0528.58031 MR 0730280 · Zbl 0528.58031
[13] Y. S. Ilyashenko and A. S. Pyartli, The monodromy group at infinity of a generic polynomial vector field on the complex projective plane.Russian J. Math. Phys.2(1994), 275-315.Zbl 0915.34005 MR 1330871 · Zbl 0915.34005
[14] S. A. Jennings, Substitution groups of formal power series.Canadian J. Math. 6(1954), 325-340.Zbl 0058.02201 MR 0061610 · Zbl 0058.02201
[15] G. Koenigs, Nouvelles recherches sur les équations fonctionnelles.Ann. Sci. École Norm. Sup. (3)2(1885), 385-404.Zbl 17.0370.02 MR 1508770 · JFM 17.0370.02
[16] S. Lang,Algebra, vol. 211 ofGraduate Texts in Mathematics. Springer-Verlag, New York, third ed. (2002).Zbl 0984.00001 MR 1878556 · Zbl 0984.00001
[17] J. Leslie, On the group of real analytic diffeomorphisms of a compact real analytic manifold.Trans. Amer. Math. Soc.274(1982), 651-669. Zbl 0513.58017 MR 0675073 · Zbl 0513.58017
[18] R. C. Lyndon, The equationa2b2Dc2in free groups.Michigan Math. J 6(1959), 89-95.http://projecteuclid.org/euclid.mmj/1028998143 Zbl 0084.02803 MR 0103218 · Zbl 0084.02803
[19] J. Milnor,Dynamics in One Complex Variable. Vol. 160 ofAnnals of Mathematics Studies. Princeton University Press, Princeton, NJ, third ed. (2006).Zbl 1085.30002 MR 2193309 · Zbl 1085.30002
[20] J.-F. Mattei, J. C. Rebelo and H. Reis, Generic pseudogroups on.C; 0/and the topology of leaves.Compos. Math.149(2013), 1401-1430.Zbl 1314.32033 MR 3103071 · Zbl 1314.32033
[21] L. Marquis and J. Souto, Surface groups of diffeomorphisms of the interval. Israel J. Math.227(2018), 379-396.Zbl 06976582 MR 3846328 · Zbl 1443.20062
[22] A. Y. Ol’shanski˘ı, On residualing homomorphisms andG-subgroups of hyperbolic groups.Internat. J. Algebra Comput.3(1993), 365-409. MR 1250244 · Zbl 0830.20053
[23] J. C. Oxtoby,Measure and Category. Vol. 2 ofGraduate Texts in Mathematics. Springer-Verlag, New York, Berlin, second ed. (1980). A survey of the analogies between topological and measure spaces.Zbl 0435.28011 MR 0584443 · Zbl 0435.28011
[24] C. L. Siegel, Iteration of analytic functions.Ann. of Math. (2)43(1942), 607-612.Zbl 0061.14904 MR 0007044 · Zbl 0061.14904
[25] S. Sternberg, On the structure of local homeomorphisms of euclidean n-space. Amer. J. Math.80(1958), 623-631.Zbl 0083.31406 MR 0096854 · Zbl 0083.31406
[26] B. Szegedy, Almost all finitely generated subgroups of the Nottingham group are free.Bull. London Math. Soc.37(2005), 75-79.Zbl 1073.20022 MR 2105821 · Zbl 1073.20022
[27] F. Takens, Normal forms for certain singularities of vector fields.Ann. Inst. Fourier23(1973), 163-195.Zbl 0266.34046 MR 0365620 · Zbl 0266.34046
[28] M. Waldschmidt, Independance algébrique des nombres de liouville.Lecture Notes in Math.1415(1990), 225-235.Zbl 0729.11035 MR 1044117 · Zbl 0729.11035
[29] S. White, The group generated byx7!xC1andx7!xpis free.J. Algebra 118(1988), 408-422.Zbl 0662.20024 MR 0969681 · Zbl 0662.20024
[30] J.-C. Yoccoz, Centralisateurs et conjugaison différentiable des difféomorphismes du cercle. 231 (1995). pp. 89-242. Petits diviseurs en dimension1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.